GENOME WIDE TRANSCRIPTIONAL COMPARISON OF
BATCH AND CHEMOSTAT NUTRIENT LIMITED CULTURES
OF SACCHAROMYCES CEREVISIAE

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF GENETICS
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFULLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Alok Jerome Saldanha

September 2003

© Copyright by Alok Saldanha 2003

All Rights Reserved

| certify that | have read this dissertation and that, in my opinion, it is fully adequate in scope
and quality as a dissertation for the degree of Doctor of Philosophy.

David Botstein
Principal Advisor

| certify that | have read this dissertation and that, in my opinion, it is fully adequate in scope
and quality as a dissertation for the degree of Doctor of Philosophy.

J. Michael Cherry

| certify that | have read this dissertation and that, in my opinion, it is fully adequate in scope
and quality as a dissertation for the degree of Doctor of Philosophy.

Tim Stearns

| certify that | have read this dissertation and that, in my opinion, it is fully adequate in scope
and quality as a dissertation for the degree of Doctor of Philosophy.

Russ Altman

Approved for the University Committee on Graduate Studies:

Abstract

The chemostat, a continuous culture system, may provide a better
controlled environment for detailed studies using highly sensitive, genome-wide
techniques than the widely used batch culture. However, the relation and
relevance of the chemostat to batch culture has not been fully characterized.

In the first chapter of this thesis | use genome-wide transcriptional profiling
to compare batch timepoints and a steady-state chemostat culture under
phosphate, sulfate, leucine and uracil limitation. The profiles, together with
physiological data, show that phosphate and sulfate limited batch cultures
maintain homeostasis as the limiting nutrient is depleted, and are comparable to
the chemostat near the point when the limiting nutrient is exhausted. Importantly,
there is not a stress response in the chemostat. Leucine and uracil limited
chemostat cultures also appear to lack a stress response, but the existence of a
comparable point is more difficult to ascertain. Comparison of changes across
the timecourses revealed induction of genes involved in the metabolism of the
limiting nutrient for most nutrients, but there was no relevant response found for
uracil limitation. Several other clusters specific to particular limitations provide
insight into the response to those limitations.

In the second chapter, | present the design and implementation of Java
Treeview, a general, cross platform, open source visualization program for

genome-wide microarray data.

Acknowledgements

| would like to thank my entire cohort of Botstein Lab yeast people, starting
with Jon Binkley and Ellie Click, Kirk Anders, Matt Brauer, Maitreya Dunham and
later, Michael Shapria, Jagoree Roy and Michal Ronen. | have learned
something valuable from every one of you, and together we had the best lab
environment one could hope for. | would also like to thank the human side of the
lab, particularly John Murray, Mike Whitfield and Mitch Garber, who were my
home away from home in the final days. Rob “Gets” Pesich was consistently the
solution to any reagent supply problems, and every lab needs someone as well
organized and thoughtful. Katja Schwartz is a master of yeast and the ultimate
source of any technical proficiency | have. With the exception of microscopy, in
which | received valuable training from Jon Mulholland. | would like to thank Dr.
Dunham for her friendship, interesting discussions, good times, and also for
teaching me basic techniques when | was too ashamed to ask anyone else.

| would like to thank my good friend Mr. Raymond Luk for good times and
perspective when the going got tough, and Miss Carole Lu, who got tough when |
lost perspective.

David Botstein has been an excellent advisor, helping me see the way
forward amid many distractions. Thank you for allowing me the freedom to
pursue my ideas, while providing enough guidance to ensure | make progress.

Thanks also to Pat Brown, Julie Baker, Arend Sidow, and Man-wah Tan,
who have all given me valuable advice on several occasions, and to Gerry Fink
and Boris Magasanik, my advisors at MIT, and to Hiten Madhani and Tim
Galitski, who got me into this business in the first place.

My thesis work was supported by a National Defense Science and

Engineering Grant, and also by the Genome Training Grant.

Table of Contents

Abstract iv
Acknowledgements
Introduction 1
CHAPTER 1 2
A Comparison of Batch and Chemostat Cultures of Saccharomyces cerevisiae under
Phosphate, Sulfate, Leucine and Uracil Limitation. 2
Introduction 2
Theory of the Chemostat 4
Biology in the Chemostat 8
The Chemostat as a tool to study Adaptation and Fitness 9
The Chemostat as a tool to study the Physiology of Yeasts 10
The Relationship of the Chemostat and the Batch 16
Microarrays and Physiology 17
Materials and Methods 19
Selection of Strains 19
Establishment of Media Formulation 19
Culture Sampling 21
Cell Density and Volume 21
Cell Morphology 21
Phosphate Assay 22
Sulfur Assay 22
Microarray Data Acquisition 22
Microarray Data Processing 23
Megacluster Generation 24
Gene Ontology Enrichment 25
T-Statistic Analysis 26
Results 27
Correspondence between Batch and Chemostat 29
Limiting Nutrient is Completely Depleted During Batch Growth 29
Cells arrest as unbudded 31
Global Hierarchical Clustering of Gene Expression 32
Average Square of Log Ratios 34
Cell Size is Limitation Dependent 35
Comparison between Limitations 36
Megacluster of Batch against Chemostat Comparisons 37
Expression of Stress Genes 45
Idenitification of Genes Specific to Limitations 46
Discussion 50
Conclusions 57
CHAPTER 2 88
Java Treeview 88

Vi

Table of Tables

Table 1-1: Media COMPOSITION ... 60
Table 1-2: Metal and Vitamin Stock SoIUtions.........ccccooiiiiiiiiiiiiis 61
Table 1-3: Chi-sgared Test for Cell Morphology of Phosphate and Sulfate........ 64

Table of Equations

Equation 1-1: Relation of Growth Rate and Cell Density in Batch......................... 5
Equation 1-2: Relation of Cell Density and Dilution Rate for Arrested Cells 5
Equation 1-3: Relation of Cell Density, Growth Rate and Dilution Rate................ 5
Equation 1-4: The Monod EqQUAation ... 6

Table of Code Listings

Code Listing 2-1: ConfigNOde.javaccoooiiiiiiiiiie e 135
Code Listing 2-2: XmICONTIGjtV.....ueeeieieiiee e 140
Code Listing 2-3: DataMatriX.Java........ccceeiiriiiiiiiiiieeeeeeeeiee e 141
Code Listing 2-4: HeaderInfo.java.........cccccooiiiiiiiiiiieeeeeeee e 142
Code Listing 2-5: DataModel.java..........coooioiiiiiiiiiiieieeeeee e 143
Code Listing 2-6: MainPanel.java ... 145
Code Listing 2-7: MOdeIVIEW.JaVa........ccooiiiiiiiiiiiiieeee e 146
Code Listing 2-8: VIEeWFrame.java ... 150

viii

Table of Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 1-6:
Figure 1-7:
Figure 1-8:

Establishment of Limiting Media.ooeuiiiiiiiiiiiiiiiiiieeeeeeeee 58
Phosphate Assay Calibration CUrveeeeeveeveiivieeeeeeeeiiieeeeennee. 59
Nutrient Depletion During TimeCOUISe.ccooiiiiiiiis 62
Cell Morphology During TIMECOUISE..........ceeviieiiiiiiiiiiiiieeeee e 63
Global Clustering of Phosphate and Sulfate........................... 65
Global clustering of Leucine and Uracilccoooeeiei . 66
Variation of Ratios 0N Array ... 67
Cell Size Variation Across TIMECOUISE........ccceeeiiiiiiiuiiiiiiieee e 68

Figure 1-9: Megacluster of All LIimitations ... 69
Figure 1-10: Clusters Related to the Stress Response.........cccccoovviiiiiiiiiieneennnn, 70
Figure 1-11: Limitation Specific CIUSIErS..........ccooiiiiiiiiii e 76
Figure 1-12: Energy MetabolisSm ... 78
Figure 1-13: Coherent CIUSTEIS......ccooi i 79
Figure 1-14: Heterogenous CIUSEer............euuiiiiiiiiiiieeee e 80
Figure 1-15: Environmental Stress ReSPONSe.........coooiviiiiiiiiiiiiiiiiiiiieeeee e 81
Figure 1-16: COmMMON RESPONSEceeiiiiiiiiiiieiiie et 82
Figure 1-17: Limitation-Specific ReSponse..........cccovvviiiiii 84
Figure 1-18: Phosphate Pathway Regulation...............ccccc, 86
Figure 1-19: Sulfate Pathway Regulation............ccccoiiiieeees 87
Figure 2-1: Example XML Configuration Tree..........ccccouiiiieiiiiiiiiiiiiiieeeeeeees 138
Figure 2-2: ViewFrame Dialogs. ... 160
Figure 2-3: Dendrogram Display ... 162
Figure 2-4: Dendrogram Dialogs. ... 163
Figure 2-5: Scatterplot Display and Dialogs.........coouuiuiiiiiiiiiiieeiiiiiieeeee e 164
Figure 2-6: Karyoscope Display ... 165
Figure 2-7: Karyoscope Dialogs. ... 166
Figure 2-8: SUMMAry DiSPIay.......cooiii i 167

Introduction

This is truly an exciting time to be a biologist. The availability of genome
sequence, the informatics resources to utilize it, and high throughput assays to
generate more data hold the promise of a more comprehensive understanding
of many aspects of biology. However, the comprehensive nature of whole-
genome techniques raise new issues; subtle changes in experimental
conditions can lead to complicating artifacts in the data.

The first chapter of this thesis is dedicated to the study of the
transcriptional programs in batch and chemostat cultures of yeast. The
relevant issue is how the transcriptional network responds to prolonged
limitation for a particular nutrient; does the culture enter a state inaccessible to
batch grown cells, is it undergoing a persistent stress response due to
starvation, or does it maintain a homeostatic balance?

In addition to addressing the questions of the relationship of the batch
to the chemostat, these data also allow me to characterize the transcriptional
response to running out of the limiting nutrient during the timecourse. This
gives insight into the physiological response particular to each limitation.

In the second chapter, | present Java Treeview, a general tool for
visualization of microarray data. The value of large datasets is limited by our
ability to make sense of them. Java Treeview provides the proven visualization

of hierarchical clustering in a scalable, platform-independent package. It also

includes two new displays: a scatterplot display for visualizing the relationship
between per-gene statistics and the clustering, and a karyoscope display, that
visualizes the gene expression data in genome order. All of these displays are
customizable and support export. Java Treeview is also extensible, open-

source, and freely available from http://jtreeview.sourceforge.net. Indeed, in

the first 40 days since the website was set up Java Treeview has been
downloaded over 300 times, and several people have contacted me with

proposed extensions.

Chapter 1

A Comparison of Batch and Chemostat Cultures of
Saccharomyces cerevisiae under Phosphate, Sulfate,

Leucine and Uracil Limitation.

Introduction

Metabolism is flexible. Common laboratory organisms can consequently
be grown on a wide variety of media. However, there are certain classes of
nutrient of which at least one member must be present. There must be a
source for each of the elements which comprise the organism, including
carbon, nitrogen, phosphorus, sulfur and other less abundant salts and

minerals. For non-photosynthetic organisms, there must also be an energy

Chapter 2

Java Treeview

Introduction

With the advent of whole-genome analysis techniques, the collection of
hundreds of thousands of measurements by a single researcher has become
routine. The sheer volume of data collected makes it impractical to consider all
of the data values manually. Thus, the statistical analysis of data has become
a topic of major importance to genome biologists. By characterizing genes and
experiments statistically, one can avoid having to consider each one
individually. Simple patterns and groups can be extracted from the sea of data
which can then be compared with biologically relevant factors.

A key companion to the generation of appropriate statistical measures
is the ability to visualize them. One of the key ideas which led to the long term
success of Michael Eisen’s Treeview program was the separation between the
generation of the clustergram, which can be achieved by multiple different
programs, and the display, which is handled entirely by Treeview. Thus, it
suddenly become possible to generate clustergrams according to arbitrary
metrics, and then visualize them with the same program. The key benefit to

the developer was that they no longer needed to worry about how they would

88

display the data. The key benefit to the user was that they could view the
results of novel analysis from the same interface as before.

Java Treeview takes this approach another step. It extends the file
format of Treeview to allow the incorporation of more types of data, and adds
several new displays to view the new types. Finally, it links these displays
together with a unified selection model to facilitate comparison between the

types.

Overview of Original Treeview

Java Treeview is heavily based upon the original Treeview by Michael
Eisen (Eisen, Spellman et al. 1998), which is in many ways simpler. It is
therefore helpful to have an understanding of the purpose and operation of the
original Treeview before trying to understand how Java Treeview works.

Treeview displays the result of hierarchically clustered gene expression
data in a way that is convenient and intuitive to navigate. One of the biggest
discoveries enabled by whole genome microarray technology is the
coordinated regulation of whole pathways corresponding to biological
processes. lt is this aspect which has made the technique so useful, and
which hierarchical clustering identifies so well.

Treeview generates its display from three simple tab-delimited text files.
The first, the cdt file, contains the clustered expression data along with some

gene identifiers. There is one gene per row, and one array per column. The

89

ATR and GTR files contain a flattened form of the hierarchical tree, with one
row per node, one column each for left and right child, and one column for the
correlation.

The display produced by Treeview allows one to navigate the gene and
array trees, and click on the image of the expression data to produce a
zoomed- in image of the selected genes in an adjacent panel. However, it has
many limitations, and is coded in an obscure toolkit so that it is annoying to
develop.

The limitations which Java Treeview seeks to overcome are the
platform dependence, which limits users, and the toolkit, which limits
developers. It also seeks to have excellent performance on large datasets,
and to be deployable under the widest set of circumstances, including java
applets.

Java Treeview is a complex program consisting of over 42,000 lines of
code. It is still under development, and the extent to which it will be carried is
unknown. There are groups which are making it into a Java Web Start
application for viewing a web database, a group which has added support for
visualization of a novel clustering algorithm, and SMD at Stanford has
expressed interest in an Applet version for viewing the output of SMD’s
clustering. In truth, all these things are possible and more if there is interest. It
is difficult to summarize the amount of effort which has gone into the

development. This chapter will consist of two major sections. The first is a

90

description of the architecture, focusing on key design decisions and the
reasons behind them. The second will be a walkthrough of how the different
parts of Java Treeview work, to illustrate how the architecture comes together

in a working application.

Design of Java Treeview

Choice of Platform: Java

A major drawback of the original Eisen Treeview is that it is written
using an obscure toolkit and consequently only runs on a single platform. This
hinders usability for end users, who may have more convenient access to an
alternative platform, and places an even higher barrier for the developer, who
even if he has access to the platform, will most likely not be familiar with the
toolkit. These drawbacks seemed difficult to circumvent until the advent of the
Java Programming Language (Joy, Steele et al. 2000). With Java, it is now
possible to write robust, scalable applications which deliver rich interfaces in a
cross platform manner from a single source code base. Additionally, Java
applications can be easily modified to form Applets, if care has been taken to
stay within the limitations that browsers impose. To maximize the pool of
developers, and users, and hence the utility of the resulting program, | chose

91

to write rewrite and extend Treeview in Java rather than extend the version

originally written by Eisen.

Persistence of Configuration Information: The ConfigNode

Interface

One of the things which impacts the usability of a piece of computer
software is the amount of time and effort it takes to get it into a state where
useful work can be done. Ideally, double-clicking the icon would open exactly
to the file you want to view with all of the appropriate options set. At the other
extreme, the software could start in the same default state every time you
open it, and force you to hunt for files and configure colors. The business of
storing configuration information is an attempt to make the user experience
more like the former.

Because Java Treeview is designed to be extensible, it did not make
sense to store configuration information in a central location. A view might be
instantiated more than once for a particular dataset; if the two views had
different settings and stored them in the same place, they would clobber each
other. Furthermore, since different views may be developed at different times
by different developers, there is a chance that they would again clobber each
other’s values.

A solution to this issue is to use a hierarchical data structure. Each

object can be bound to a node of the data structure. The node supports the

92

ability to store key-value pairs with specified default values, and also the ability
to create subnodes. Thus, an object which contains another object can simply
allocate a subnode for it, and then bind the “sub-object” to the subnode. The
interface | chose to implement this idea, ConfigNode, is listed in Code Listing
2-1. There are currently two concrete instantiations of this class, one of which
is an inner class of XmIConfig and represents a node in an XML document,
and the other of which is DummyConfigNode, which is not bound to persistent
storage, and can be used for testing as well as when persistence is not
desired.

This method of storing configuration information is used both to store
per-document settings as well as program-wide presets. The complete
configuration graph for a typical document’s settings is displayed in Figure 2-1.
| have tried to decompose the graph into comprehensible chunks by grouping
together nodes which represent configuration of similar things. The
corresponding Xml document is listed in Code Listing 2-2. The complexity of

the state makes it difficult to maintain without a hierarchical data structure.

Decoupling Views and Models: DataMatrix, Headerinfo and

DataModel

Within the application, there are many components which must get data
from the data model in order to do their job. Some of these components are

graphical in nature, and must access data values, as well as recognize which

93

values represent missing data. Others depend only on certain types of
annotation to the rows and columns. However, if an explicit dependence on
the TVModel class is hard-coded into the View classes, then all other models
will be forced to extend TVModel. If the other model does not support some of
the features of TVModel, it will be forced to stub out the functionality to prevent
unexpected behavior. Furthermore, there are some “views”, such as
UrlExtractor and HeaderSummary, which depend upon attributes of rows and
columns which are completely symmetric. If the row instantiation and the
column instantiation both maintain references to the same TVModel, they will
need to retain knowledge of which orientation they are. This has the
disadvantage of reducing their reusability in the context of other models, if
there is a third type of header. These tensions can be resolved with the
introduction of interfaces which can be created in a variety of ways by data
models, and used to flexibly reuse View classes on different aspects of the
same data model. The three interfaces are the DataMatrix interface, the
HeaderlInfo interface, and the DataModel interface, which are listed in Code
Listing 2-3, Code Listing 2-4 and Code Listing 2-5.

These interfaces greatly increase the reusability of Views. For example,
the same UrlExtractor class is used to construct URLs for genes and arrays.
The constructor for UrlExtractor accepts a HeaderInfo object, but does not
know or care whether that object represents gene headers or array headers.

The URL template and the appropriate header to insert into the template are

94

stored in its ConfigNode. When it is passed in an index, it simply uses the
index to look up the appropriate headers in the HeaderInfo and fill out the
template.

| anticipate as the variety of analysis methods viewable by Java
Treeview expands, additional interfaces may be added. For instance, it is likely
that an interface representing a tree will have to be introduced once there are
more data models which produce trees, and the data associated with the trees

becomes richer.

Graphics Performance: Tree Traversal and Pixel Buffering

Graphics performance under Java can be problematic. The main issue
is the high level of abstraction at which drawing is usually handled. Although
this allows device independent drawing in a natural way, it also incurs a
performance penalty.

There are three particular types of views in Java Treeview which suffer
substantially from the drawing performance of Java. The first is the gene tree,
drawn by LeftTreeDrawer on GTRView. There are simply too many lines which
must be drawn if the entire tree is to be displayed. The second includes the
pixel views, the GlobalView, which shows a zoomed out overview of the data,
and the ZoomView, which shows the zoomed in view of the selected data. The

third is the ArrayNameView.

95

To speed up drawing of the gene tree, a variety of strategies which
avoid unnecessary redrawing are used. In order to exploit these strategies,
Java Treeview maintains an offscreen buffer of currently visible part of the tree
(buffering the entire tree would take prohibitively large amounts of memory).
This has the additional benefit that whenever the Swing graphics subsystem
requests a portion of the image, it can be quickly copied. Since this strategy is
of benefit to other views, it is implemented by ModelViewBuffered, the
superclass of GTRView. The first trick to rapidly drawing the gene tree is the
observation that if the leftmost and rightmost children of a subtree are both
above or below the visible portion of the gene tree, the entire subtree can be
skipped. This allows for a huge speedup in tree drawing when scrolling a
zoomed-in GlobalView. Furthermore, during initial image generation as the
LeftTreeDrawer traverses the tree, it checks to ensure that at least some
member of a child is visible before recursively drawing it. The second trick is to
recognize that when a subtree is selected, the rest of the tree does not need to
be redrawn. This principle is used in several ways. First, when the mouse is
clicked, instead of redrawing the whole tree Java Treeview first draws over the
currently selected subtree in the non-selected color, followed by drawing the
newly selected subtree in the selected color. Secondly, when a parent node is
selected, we merely need to redraw the parent node and its formerly
unselected children in the selected color. The reverse is true when a child of

the currently selected node is selected.

96

A different strategy entirely is required to speed up drawing of the
GlobalView and ZoomView by the PixelDrawer. The key issue is the sheer
number of colors which appear in these views. Using the standard java
Graphics interface, the only way to draw multiple colors is to create a Color
object for each one. This leads to unacceptable overhead, particularly on Mac
OSX. A solution to this problem is to use the MemorylmageSource interface,
which allows one to create an image which displays pixel data stored in an
array of int. Furthermore, changing the values in the int array does not trigger
an update until MemorylmageSource.newPixels() is called. This is not quite as
good as directly manipulating a pixel buffer, but in practice it is sufficiently fast.

A final difficulty is drawing vertical text. Previous to Graphics2D, Java
had no way of drawing rotated text. Thus, the only way to generate a view with
vertical text is to draw it horizontally to an offscreen image and then rotate it.
Because wide compatibility was a major design constraint in Java Treeview,
this was the strategy pursued. However, rotating an offscreen buffer is not as
fast as one would hope. It is likely that additional speed could be gained by

avoiding the use of image rotation when Graphics2D is available.

An Extensible File Format: The Generalized CDT File

It is difficult to forsee what types of data will be produced and how best
to manage them. For instance, we may want to record per-gene statistics or

category information, or perhaps specify different colors by which the names

97

are rendered. In order to do all of these things, we need a very flexible file
format which has enough structure that applications can associate data with
the appropriate items, but is general enough that the format will not need to be
rewritten every time we want to include a new type of data.

The Generalized CDT (GCDT) file format is a straightforward
generalization of the PCL and CDT file formats used by common clustering
tools which fulfills these requirements. This file format is a table formed of tab-
delimited text with a few special extra constraints which make it well suited for
the kind of data generated by gene expression studies — it requires the
inclusion of a special EWEIGHT row and GWEIGHT column. The idea is that
the lower right hand corner of the tab-delimited file is purely microarray data.
In addition to microarray data, this file can contain additional per-gene and
per-array annotation in columns before the GWEIGHT column or in rows
before the EWEIGHT row. The one additional detail is there is a special
annotation column, called the unique identifier column, which is either the first
column in the file, or the second if the first column is named “GID”. This is
because in traditional CDT files the node identifiers are placed in the first
column, which is labeled GID by convention, pushing the actual unique
identifiers into the second column. Also for backwards compatibility with the
earlier PCL and CDT formats, if the GWEIGHT column is missing Java

TreeView assumes the data starts on the third column, or the fourth column if

98

the first column has the header GID. Similarly, if the EWEIGHT row is missing
Java TreeView assumes the data starts on the second row.

Using the Generalized CDT format, additional per-gene and per-array
annotations and scores can be added to the file and carried through multiple
steps of analysis. Applications can use the column and row headers to decide
whether a particular annotation is meaningful to them, and ignore the rest.
They can also present the column names to the user for configuration of
various analyses. This file format is support by the PCL_Analysis Perl package

(http://pcl-analysis.sourceforge.net) which is highly recommended for use with

Java Treeview.

It should be mentioned that there are two other file formats, the tree
files, which end in a .gtr or .cdt extension, and the xml-format configuration
files, which end in a .jtv extension. The tree files are tab-delimitted text with
exactly four columns corresponding to node id, left child, right child, and
correlation. The XML configuration file is a straightforward representation of
the tree of ConfigNodes. For further details on the XML format, see the

XmlConfig.java source file.

Enabling Modularity: Generic Structure of Views

If a single application is going to incorporate an unspecified number of
views of unknown type, it is essential that they conform to a particular interface

through which the application can manage them. This is yet another instance

99

of a concept which was applied liberally throughout Java Treeview, as
evidenced by the earlier discussion about HeaderInfo, DataMatrix and
DataModel.

All data displays in Java Treeview are implemented in a stereotyped
fashion. The classes which represent a display of the data implement an
interface named MainPanel. This nomenclature borrows from the Java class
JPanel, which represents a panel within a window. The MainPanel generally
will contain one or more ModelViews, which actually draw the images. The
MainPanel is generally constructed around a DataModel, and may require
additional configuration, for instance what to plot in a scatterplot. The
ModelViews typically do not have explicit dependency on any model and are
instead constructed using a HeaderInfo or DataMatrix. The MainPanel is
generally cognizant of the ModelViews which it features, and can populate a
pulldown menu with items that allow their configuration. The source code for
the MainPanel interface is listed in Code Listing 2-6, and specifies exactly the
methods an implementing class must provide. As is clear from the source, a
class implementing MainPanel must provide methods to populate various
menus, must be able to save and restore itself from a ConfigNode, and must
be able to scroll itself so that a particular gene index is visible.

The MainPanel itself must be displayed in a frame. The ViewFrame
abstract class describes the common functionality that a MainPanel can

expect from its containing frame. The source code for this abstract class is

100

listed in Code Listing 2-8. A ViewFrame must be able to observe and
coordinate MainPanels if necessary. Currently, a ViewFrame must also
provide access to shared data structures, such as the selection model,
implemented by CdtSelection, the various presets and the shared data model,
typically an implementer of DataModel. Provision of this data to the
MainPanels may shift to the constructors to reduce the dependency of the
MainPanels on the ViewFrame abstract class. The ViewFrame abstract class
also provides some functionality which is required by all extending classes,
such as management of the most recently used list of files (FileMRU), initial
window placement and tracking, and the ability to open urls. With the addition
of the ViewFrame, the complete operation of Java Treeview can be
understood at an abstract level. The main() routine sets up an application,
either TreeViewApp, or its subclasses LinkedViewApp and KmeansViewApp,
which creates a tree of ConfigNodes from a global presets file. The application
then opens a ViewFrame and waits for user interaction. When the user
indicates a file is to be opened, a DataModel representing that file is created,
and a tree of ConfigNodes representing the file state is created. According to
the ConfigNodes , the ViewFrame constructs the appropriate MainPanels,
which then again consult the ConfigNodes to construct the appropriate
ModelViews. All changes to state are stored in the ConfigNodes, and for

persistence the entire tree is written out on exit, or when another file is loaded.

101

Enabling Shared Selection: The CdtSelection object

A key goal of Java Treeview was not only to allow the creation of
multiple displays of the data, but to make it easy to see how they relate to
each other. One step towards this goal is to have a shared selection model.
With this in place, when a gene or array is selected in one view, it is selected
in all views. Already something like this is required for coordination within the
Dendrogram display from the Eisen Treeview between the Global Pixels and
the Zoom Pixels. By making the selection model program wide, we can reap
similar benefits for other displays of the data.

The CdtSelection object is the means by which this was implemented.
It is maintained by the ViewFrame, and hence is document-wide, although not

program-wide like the presets and recently used file list.

Implementation of Java Treeview

In this section, the various displays in Java TreeView are discussed in
detail. For each display the contents and possible manipulations, the creation
and configuration by the user, implementation in java objects, construction by
the application and export options are described. The shared code for
interfaces is kept in the main source directory, whereas the code for each
display is kept in a separate subdirectory to minimize dependencies. The code

for the applications is kept in a separate “app” subdirectory. With the

102

introduction of the DataModel interface, it should be possible to additionally
move all concrete implementations in to a special “model” subdirectory in the
future to enforce decomposition.

At this point, it must be noted that Java Treeview was initially developed
as a framework. The idea was to provide a set of views and functionality out of
which users could easily build one-off applications and test out novel ideas.
This was intentionally done to avoid contamination of the main Treeview
application with code of dubious quality from other contributors, while not
restricting the utility of the code. Over time, it has become apparent that the
proliferation of Java Treeview associated applications can be confusing to the
user as well as novice developers. The model towards which Java Treeview is
moving is a single application which can load files as different types. Under
this model, the user will select a file, and simultaneously select the display
type from a pulldown menu labeled “Display as” within the same dialog. The
initial display types will be “Autodetect”, which causes Java Treeview to
attempt to detect the appropriate display automatically, “Treeview” for the
classic Treeview interface, “Linkedview” if additional linked visualizations are
desired, and “K-means”, if the file was produced using K-means clustering.
The type will determine which data model the data is loaded into, and which
interface is presented to the user. For convenience, the last selected type will
be stored in the global presets file, and the type of previously loaded files will

be stored in the most recently used list along with the file name. This will make

103

it convenient to reopen files with the previous display type, but possible to
reopen them with another (by using the “File->Open...” menu item).

This user interface has not yet been implemented, so these examples
will be described from the perspective of the currently working Linkedview

application, which is the most general of the three.

Description of ViewFrame Functionality

This section describes functionality that is provided by the ViewFrame
abstract class, and hence available to all of the MainPanels. The primary
functions are file management under the File menu , management of presets
for the various views under the Settings menu, searching the dataset for
genes with annotation matching a pattern under the Analysis menu, export of
tab-delimited text under the Export menu, and window management under the

Window menu.

File Management

The ViewFrame provides file management. File selection is initiated by
the user selecting “File->Open”, and is provided by the standard swing
JFileChooser dialog, shown in Figure 2-2 part E. As was mentioned before,
this dialog will be modified to accommodate a pulldown for display type. There
is a submenu on the File menu, “File->Recent Files”, which contains a list of
most recently used files from which the user can select. The last file related

item is “File->Edit Recent Files...”, which displays the “Edit File List” dialog

104

depicted in Figure 2-2 part F. The final item on the File menu is “File->Exit”,
which simply closes the application as one might expect.

Within the “Edit File List” dialog, the user may update the locations of
files they may have moved by selecting the file and pressing the “Find” button,
and remove files from the list by selecting a set of files and pressing the
“‘Remove” button. Another useful feature is the ability to clear the file list by

pressing the “Remove All” button.

Preset Management

Presets, along with settings, comprise the means by which Java
Treeview is configured. Because presets potentially apply to all the displays,
the ViewFrame provides management of them, whereas the settings are
managed by the displays themselves. The presets are configured using the
items in the Presets submenu of the Settings menu. All of the menu items
open up the “Presets” tabbed configuration panel. Although “Presets” currently
has 6 tabs, there are three primary types of presets.

Presets specify a commonly used configuration of settings. The user
also may also designate a particular preset to be the default. The default
preset specifies the settings which are used for a file which does not have
document-level settings associated with it. The presets can be edited when no
files are loaded whereas the document settings, being associated with a file,

can only be edited when a file is opened. It is important to remember that

105

presets specify common settings, and although the default preset is used as
the settings for a naive file, it can be overridden by changing the settings for
the file directly. Referring back to the section on ConfigNodes, the
ConfigNodes for presets are stored in the system-wide settings file, whereas
those of the settings are stored in the document-level .jtv file. The distinction
will become clear when settings are discussed.

The first type of preset consists of the url presets, Gene Url Presets and
Array Url Presets. The dialog for the Gene Url Presets is depicted in Figure
2-2 part A. The user may change the name of one of the presets, edit the URL
template which it links to, and select one to be the default. There is also a
special template called None, which can be selected if there is no appropriate
database. This template is commonly set to be the default for the array url
presets, as there is generally not an extensive online database for array
information.

The second major type of preset is comprised of the color presets,
“DendroColor”, “ScatterColor” and “KaryoColor”. There is a separate type of
color preset for each type of MainPanel because each display uses a different
numbers of colors, and uses them in ways which do not easily map from one
display to the other. The color presets panel for the Karyoscope display is
shown in Figure 2-2 part B. The name of the preset is listed in the first column,

and can be edited. The colors for that preset are shown in the next column,

106

followed by a Remove button which removes the preset, and a radio button
which allows one of the presets to be designated the default preset.

Clicking on one of the colors will pop up a standard color selection
dialog, shown in Figure 2-2 part H. The dialog title indicates the color being
edited, and the user may choose from various color swatches, HSB color
values, and RGB color values. The user may also add a new color set by
pressing the “Add New” button, and add standard colors which were present
the first time Java Treeview was run by pressing the “Add Standards” button in
case they have removed them.

The final kind of preset concerns the genomic locations of the different
loci. The interface, depicted in Figure 2-2 part C, allows the user to rename a
coordinates preset, search for it using the “Find...” button, remove it by
pressing the “Remove” button, and set it to be default with the “Default?” radio
buttons. The “Find...” button opens a standard file chooser dialog, similar to
that in Figure 2-2 part E.

The coordinates file is actually a standard Generalized CDT file with a
few specialized annotation columns, as suggested by the name
“YeastCoordinates.pcl” in the figure. The required columns will be discussed in
more detail in the section “Implementation of the Karyoscope display”. When a
Karyoscope display is created, the file indicated by the default preset is parsed
and linked up with the current data model using the unique identifier column

described in the Generalized CDT specification. If the default preset is set to

107

None, then the data model itself is searched for the special columns. This will

be described in more detail in the section on the Karyoscope display.

Searching for Genes

The ViewFrame also provides the ability to search for genes. Selecting
“Analysis->Find...” displays the “Search Gene Text for Substring” dialog,
shown in Figure 2-2 part G. The user will generally enter text in the “Enter
Substring” text field, click the “Search” button to search for the substring, and
then select one or more genes from the result list. Because CdtSelection
supports discontinuous selection, this does not pose a problem. In addition,
the user can specify a case sensitive search using the “Case Sensitive”
checkbox, select the next gene in the list after the currently selected one using
the “Next” button and select all genes using the “All” button. The last button,
“Summary Popup” displays a popup window similar to the ZoomView of the
Dendrogram display depicting the gene expression and annotation of just the
selected genes. This button only works if a Dendrogram display is currently
selected, for reasons that will become clear in the later section on the
Summary display.

The reason that the ViewFrame is able to provide gene searching
functionality independent of the MainPanel is primarly because of the
scrollTolndex(int) method provided by the MainPanel interface. By combining

this method with the shared DataModel and the shared selection model

108

implemented by CdtSelection, the ViewFrame itself can search for genes,

select genes, and scroll the MainPanels to the appropriate location.

Tab-delimited Text Export

The shared selection model and data model makes it practical for the
ViewFrame to directly support export of subsets of the data to tab-delimited
text. Selecting “Export->Export to Text File...” when some set of genes is
selected will cause the “Gene List Maker” dialog shown in Figure 2-2 part D to
be displayed. This dialog is somewhat misleadingly named, as it supports
highly configurable export of the data. By default, only the unique ids are
printed; since there is only one value in each row, no tabs are added, and this
has the effect of making a gene list. The user can select any subset of the
annotation headers using the “Field(s) to print:” list, and optionally include the
expression data and a header line using the “Expression Data?” and “Header
Line?” check boxes. This flexibility allows easy export of subsets of the data
into other applications such as Excel. Again, it only exports data for the
currently selected data, which can be selected in a variety of ways through any

of the views.

Window Management

Java Treeview applications can have multiple windows open. The code
which manages this is spread between the ViewFrame abstract class and the

actual application class. This is because there needs to be a central list of

109

open windows, which clearly cannot be maintained by the ViewFrame.
However, currently the ViewFrame must communicate with the application
class through its concrete subclass, since there is no generic interface for
application classes. This suggests the introduction of an App interface at some
point in the future.

The “Window” menu consists of a list of current windows and their
associated keyboard shortcuts, which are simply the apple key together with
the window’s number, followed by the “New Window” and “Close Window”
items. Selecting the window name, or typing the keyboard shortcut will cause
the window to be moved to the top. Each window in Java Treeview is an
instance of a ViewFrame subclass. Selecting the “New Window” item creates
a new ViewFrame instance, and selecting the “Close Window” item closes the

current ViewFrame instance.

Description of Dendrogram Display

The Dendrogram display is based upon the interface of the original
Treeview by Eisen. The display is pictured in Figure 2-3. This is the primary

view used in Linkedview, and is familiar to many researchers.

Dendrogram Functionality

The Dendrogram display is extremely useful because it presents the
data at two different scales. On the left, the global pixels, gene tree and array

tree present a zoomed out view of the data in which broad patterns of gene

110

expression can be observed. From this view, the user can select a subset of
the data by clicking and dragging on the global pixels, or by clicking on the
gene tree. If a node in the array tree is clicked, or if the shift key is held down
on the global pixels, arrays can be selected as well. On the right, the array
names, zoom array tree, zoom pixels and gene annotation provide details on
the selected genes. Clicking on a gene annotation or an array name opens a
link to a web database with additional information. The boundaries between
any of the components can be moved simply by clicking and dragging with the
cursor. There is also a special menu item available only when a Dendrogram
display has the focus, “Analysis->Create Summary...”, which will be discussed
later in the section on the Summary Display.

Keyboard input in Java Treeview is sent to the component containing
the cursor. If the cursor is over the Global Pixels, the selected area can be
moved around using the arrow keys, and grown and shrunk by holding the
control key and pressing the arrow keys. If the cursor is over the Gene Tree,
Array Tree or Zoom Array Tree, the arrow keys select the parents and children
of the currently selected node.

The Dendrogram view also provides information and hints in a variety of
ways. Letting the cursor linger on the Zoom Pixels causes the value
represented by the pixel to be displayed in a ToolTip. This information, as well
as the row, column, array name and gene annotation for that pixel is displayed

in the Status Panel. The contents of the Status Panel change to reflect the

111

status of the view which currently has focus. Thus, moving the cursor to the
Global Pixels will cause the number and extent of genes and arrays in the
current selection to be displayed. Moving the cursor over the Gene Tree, Array
Tree or Zoom Array Tree will cause the identity and correlation of the currently
selected node to be displayed. Moving the cursor to any of the displays

causes usage information for that panel to be displayed in the Hints Panel.

Recognized Annotation

The Dendrogram display specifically looks for two types of annotation,
the FGCOLOR row and the FGCOLOR column. When it finds these
annotations, it attempts to color in the gene annotation using the values in the
FGCOLOR column, and the array annotations using the FGCOLOR row. The

colors must be specified in standard hex notation, #RRGGBB.

Dendrogram Configuration

The Dendrogram display allows the user to set the color and pixel
spacing of the global and zoom views, the gene and array url linking, and the
fonts of the gene annotation and array names. All of this functionality is
organized topically into three dialogs which can be accessed from the Settings
menu when a Dendrogram display is selected.

Selecting “Settings->Pixel Settings...” will display the dialog shown in
Figure 2-4 part A. The first two sections of this complicated dialog deal with

the global and zoom X and Y pixel settings. This determines the number of

112

pixels allocated to each row and column of the data file in the global pixels and
zoom pixels views. It can either be set to a particular real value, or set to fill
the available pixels. In the event that fewer than one pixel is allocated to a row
or column, the fractional pixel value for that row or column is truncated, the
row or column is averaged together with others that map to the same pixel,
and the averaged value is displayed. The next section of the panel deals with
the contrast, which can either be typed in or set interactively with the scrollbar.
The contrast setting determines what data value corresponds to the most
intense up or down color. Values of greater magnitude than this will be
displayed with the same color, and values of lesser magnitude will be
displayed with a linear interpolation of the up and zero, or zero and down
colors in RGB space. The final section deals with setting the actual colors. The
color values themselves are displayed in the top row, followed by a row of
buttons dealing with loading and storing color sets, followed by a row of
buttons corresponding to exising presets. Clicking on the color values
themselves will bring up a color selection dialog similar to that in Figure 2-2
part H. The “Load...” and “Store...” buttons bring up load and save dialogs
similar to those in Figure 2-2 part E which allow the user to save and retrieve
color information to the color file format used by Eisen’s Treeview. The third
button, “Make Preset”, creates a preset out of the current color settings and
adds it to the program-wide list. The last row of buttons in this section

corresponds to the existing presets, and clicking any one of them updates the

113

colors to reflect that preset. This provides a convenient mechanism for
switching between common color settings.

Selecting “Settings->Font Settings...” causes the “Font Settings” dialog
depicted in Figure 2-4 part B to be displayed. This dialog allows the
configuration of font face and style using pulldown menus, as well point size
via a text field. There is also a preview region where the user can see how a
common bit of text is rendered by the font settings. By selecting the different
tabbed panels, the user can set fonts for either genes or arrays.

Finally, the “Url Settings” dialog is displayed by selecting “Settings->Url
Settings...”. This dialog, depicted in Figure 2-4 part C, allows direct editing of
the URL template as well as selection the annotation to be used to fill out the
template. The user may also choose a template from the presets listed in the
second row, or disable URL linking entirely by unchecking the “Enable”
checkbox. Using the tabs at top of the dialog, the user can set linking for both
genes and arrays.

This completes the description of the user interfaces by which the
Dendrogram display can be configured, but does not describe the actual
program structure which allows these choices to ultimately create the images.

This is discussed in the next section on implementation.

114

Dendrogram Implementation

The Dendrogram display is implemented by the DendroView container
and the components which it contains. The Java class of each of the views is
indicated in parenthesis below the conventional name in Figure 2-3. The
DendroView maintains references to the ViewFrame and DataModel from
which it was created, and uses these to construct each of the components.
When it is bound to a ConfigNode by the ViewFrame, it then binds all of its
children to subnodes of that ConfigNode. The DendroView itself only manages
the boundaries between the components, which are stored in the document-
level xml file, and is not directly affected by any configuration other than
dragging of the boundaries. It also maintain references to various shared utility
objects, including instances of ArrayDrawer, UrlExtractor, GeneSummary,
ColorExtractor, and MapContainer, which it provides to the various View
objects. The DendroView populates the “Settings” menu with the appropriate
items to configure these objects. The Views themselves listen for state
changes on these utility objects and repaint themselves. Since they share
instances of these objects, changing the single instance will cause all the
relevant Views to update. Each view also maintains a link to the
MessagePanel instances which manage the status panel and hint panel, and
update them upon cursor entry.

The GlobalView and ZoomView classes, which implement the global

pixels and zoom pixels respectively, delegate the mapping of rows and

115

columns to separate instances of the MapContainer class, drawing to an
instance of the ArrayDrawer class, and color management to an instance of
the ColorExtractor class. They extend ProducedModelView, and thus are
produced from a int buffer, which they manage the size of, but send off to
ArrayDrawer to update when there is some kind of state change. The
GlobalView and ZoomView classes themselves are mainly middlemen,
keeping track of user actions, display sizes and buffer management while
delegating the details of what and how to draw to other classes. The only
graphical elements directly drawn by the GlobalView are the selection
rectangle, a yellow rectangle denoting the selected genes, and the zoom
rectangle, a blue rectangle denoting the area visible in the ZoomView. These
are painted on after the image buffer is drawn on the window.

To ensure that the gene and array names line up, the TextView and
ArrayNameView classes, which draw the gene annotation and array names
respectively, delegate their placement to the same MapContainer instances as
the ZoomView. The actual content to display for each gene or array is
delegated to a HeaderSummary object. Thus, these components simply keep
track of the size and location of the drawable area, listen for updates, and then
draw what the HeaderSummary asks them at the location specified by the
MapContainer.

The GTRView, ATRView, and ATRZoomView, which draw the gene

tree, array tree, and zoom array tree respectively, likewise rely upon the same

116

MapContainers as the GlobalView or ZoomView. Because their drawing is
more complex, they also rely upon a TreeDrawer subclass, either the
LeftTreeDrawer for the GTRView or the InvertedTreeDrawer for the ATRView
and ATRZoomView. The TreeDrawer class itself builds up the required
TreeDrawerNode data structure from data provided from the DataModel.
There are really no settings that directly affect the various tree-drawing views,
as they are entirely specified by the CdtSelection, window placement, and the
pixel views which they adorn. It should be mentioned that the
TreeDrawerNode class has provisions to store color information, which have

not yet been exploited.

Dendrogram Creation

The Dendrogram display is automatically displayed when a new file is
opened. Additional Dendrogram displays with independent settings can be
added using the “Analysis->Make Dendrogram” menu item. When a new
Dendrogram display is created, either by opening a file or due to user
interaction, a DendroView object is instantiated and bound to a ConfigNode,
and then added as a tab to the LinkedViewFrame. If the file had been
previously opened, the DendroView is bound to the old ConfigNode to restore
the state. Otherwise, a subnode of the Views node is allocated and bound to

the DendroView.

117

Dendrogram Export

An important feature of the Dendrogram view is the ability to export
images to both the vector-based postscript format as well as the pixel-based
GIF format. Selecting “Export->Export Colorbar to Postscript”, “Export->Export
Colorbar to Gif” and “Export->Export to Postscript” opens the dialogs depicted
in Figure 2-4 parts D, E and F respectively. The fourth option, “Export->Export
to Gif”, is very similar to the “Export->Export to Postscript” dialog. All export
dialogs allow designation of the output file using the “Browse” button, which
again opens up a file dialog similar to that depicted in Figure 2-2 part E. This is
one of several commonalities in the export dialogs which simplify the task of
developing export dialogs for the developer as well as their use by users. The
export dialog will be described in detail here, and then covered more briefly for
subsequent displays.

The “Export ColorBar” dialogs create an image of the color scale used
to color in the various pixel views. They use the shared ColorExtractor and a
temporary ArrayDrawer to directly color in an image buffer according to a
temporary DataMatrix. The values in the DataMatrix are calculated using the
current contrast settings so as to look like the color bar. The interface to
configure this operation consists of a column of settings on the left, a preview
panel on the right, and an output file designation on the bottom. The common
options between both color bar export dialogs are the orientation of the color

bar, the number of boxes, the number of decimals, and the pixel sizes. For the

118

postscript export only, a bounding box can optionally be included, and the size
specified. A suggested size for the bounding box, and the total size of the
output image, are computed automatically. The bounding box indicates the
extent of the image, and is required by some postscript interpreters.

The “Export to Postscript” dialog, depicted in Figure 2-4 part F, is
constructed very similarly. It is used to export an image of the actual
Dendrogram view, and hence has an additional column of settings on the left
used to configure which headers are to be included, as well as Dendrogram-
specific configuration in the middle column. The user can choose to include
multiple or no headers at all by holding the “Apple” or “Alt” key when clicking
on the list of headers. The array headers, which are ordinarily place above the
array tree can be moved below it by clicking the “Below Tree?” checkbox.
Using the middle column of settings, the user can indicate whether to include
all genes or just the selected genes, which trees to include, whether to include
the data matrix, and the X and Y pixel scaling

These interfaces provide a simple, consist way to create rich figures

from the images generated by the Dendrogram display.

Description of Scatterplot display

The scatterplot display was create to solve the problem of how to
compare various kinds of statistics to each other, as well as to the dendrogram

clustering. Manually deriving subclusters of the data, exporting to a gene list

119

and graphing in other programs is a simple and effective strategy, but is slow
and impractical for large numbers of statistics or clusters. Using the
Generalized CDT format, the user now has the option of including the statistic

as an annotation column and constructing a Scatterplot display.

Scatterplot Functionality

The scatterplot window, depicted in Figure 2-5 part A, consists of a two-
dimensional scatterplot of per-gene statistics. The statistics plotted can be any
of the annotation columns, any of the data columns or simply the index of the
gene in the CDT file. In the plot depicted in this figure, the X axis is simply the
index of the gene in the CDT file, and the Y axis is the annotation column
labeled PVAL. If the data were entirely drawn from the null distribution, this
plot would yield a straight line; the asympotote at low P-values indicates that a
large number of genes in the data set are not behaving according to the null
hypothesis. The utility of the scatterplot display is determined by the ingenuity
of the researcher. For example, it can also be used to determine when spatial
biases on the arrays are biasing the clustering by graphing the spot the gene
was printed on against the index.

The scatterplot display supports several kinds of interaction. The
currently selected genes are drawn in a different color; thus one can select
genes in another view and see where they fall. Furthermore, a set of genes

can be selected on the scatterplot by clicking and dragging. This causes these

120

same genes to be selected in other views, and also become available for
export to tab-delimitted text or gene lists. Another useful feature is the ability to
dynamically zoom in and out of the scatterplot using the “+” and “-“ keys.
Finally, letting the mouse linger near a data point will display a tool tip with the

name and coordinates of the gene.

Scatterplot Configuration

The scatterplot supports configuration through the panel directly above
the plot itself, as well as through a separate “Display” dialog, which holds more
detailed options. On the configuration panel, the “Order” pulldown allows the
user to select the order in which the genes are draw, either selected first,
selected last or row order. The “Size” pulldown selects the size of the data
points. The “Dimension” checkbox allows the user to specify the desired size
of the canvas that the scatterplot is drawn on, which has the effect of zooming
in and out. As mentioned before, the user can achieve much the same effect
using the “+” and “-“ keys. The last item on the configuration panel is the
“Display...” button, which causes the “Display” dialog pictured in Figure 2-5
part B to be displayed. This same dialog is displayed if “Settings->Display...”
is chosen from the menu.

The “Display” dialog has two columns which specify the extent and tick

mark spacing on the X and Y axes, as well as a section dedicated to the color

121

settings, similar to that in the Dendrogram’s “Pixel Settings” dialog pictured in

Figure 2-4 part A.

Scatterplot Creation

The scatterplot must be created by the user selecting “Analysis->Make
Scatterplot of Genes...”. Instead of immediately creating a Scatterplot display,
this action displays the the “Create Graph...” dialog at which point the user
must select the desired headers to be plotted from the “X Axis” and “Y Axis”
pulldown menus. The LinkedViewFrame allocates a subnode from it’s
ConfigNode, and actually configures it with the appropriate axis information
before constructing a ScatterPanel object, binding the it to the subnode and
adding it as a tab. Thus, from the beginning the ScatterPanel is associated

with the columns it will draw.

Scatterplot Implementation

Similar to the Dendrogram, the Scatterplot display is implemented by
the ScatterPanel container, a subclass of MainPanel, and the Views it
contains. In this case, the only View is the ScatterView. There is a second
component, the ScatterParameterPanel, which implements the row of
configuration widgets above the scatterplot itself. Similar to the MapContainer
classes, which acted as mediators between the configuration dialogs and the
views in the Dendrogram display, there are Axisinfo and AxisParameter

classes which are configured by the dialogs and observed by the ScatterView.

122

The final novel feature in the Scatterplot implementation is the SPDataSource,
which specified what an object must provide in order for the ScatterView to
display it. In the running application, this interface is implemented by an inner
class of the ScatterPanel, and serves as a wrapper which uses the information
in the View ConfigNode to extract coordinate and annotations from the
DataModel. This implementation maps nicely onto the actual structure of the
Xml configuration document, as consultation of parts B and C of Figure 2-1

reveal.

Scatterplot Export

Scatterplot export is fairly rudimentary. The extent of configuration
required to provide professional quality charts can be daunting, and has been
done many times before. The goal of the existing scatterplot export is to
provide the user with a “quick and dirty” way to make a quick figure. The dialog
opened by “Export->Export to Gif...” is shown in Figure 2-5 part C. The result
will be more or less equivalent to a screen capture of the scatterplot. The best
way to improve the scatterplot export, and possibly the functionality of
scatterplot in general, would be to try and incorporate a third-party plotting
package such as the Scientific Graphics Toolkit (SGT) from NOAA

(http://www.epic.noaa.gov/java/sqgt/).

123

Description of Karyoscope display

For some important types of experiments, the proximity of loci on the
genome is expected to correlate with their measured values. For example,
techniques such as array comparative genomic hybridization (Pollack, Perou
et al. 1999) allow the detection of copy number changes on a genome scale.
Displaying the data in genome ordering allows visual identification of regions
of extended amplification and deletion. The Karyoscope display allows users
to visualize per-gene data as a bar chart in genome order. In addition, it
features configuration of gene coordinates, support for averaging loci together

in various ways, and flexible display options.

Karyoscope Functionality

Two screenshots of the karyoscope are provided in Figure 2-6. Part A
shows a zoomed out view and part B shows a zoomed in view around
chromosome 6. There are three components to the Karyoscope display, the
configuration panel, the karyoscope panel, and the familiar status panel.
Moving the cursor over the karyoscope panel causes the position of the
cursor, and a summary of the gene or genes contributing to the nearest locus
to appear in the status panel. In the karyoscope panel itself, a crosshairs is
drawn on the nearest gene and a line is drawn from the cursor to the
crosshairs. This makes it very clear which gene the information is for, and

makes it easy tell if it is the one you are interested in. Clicking at this point will

124

open a browser window directed to a web database with additional information
about the gene. The final functionality offered by the karyoscope panel is the

ability to zoom, either by using the “+” and “-“ keys, or by clicking and dragging

a rectangular area.

Recognized Annotation

In order to display the genes in genome position, the Karyoscope
display must determine the position of the loci. This is accomplished by
requiring that particular annotation columns be provided. Currently,
Karyoscope requires that there is a column named “CHROMOSOME”,
specifying the chromosome number which must be a natural number, upon
which the locus appears, a column named “ARM”, which must be one of “0”,
“17, “L” or “R”, indicating the arm that the locus appears on, and a column
named “POSITION” which contains the distance from the centromere at which
to render the current locus. This distance is in arbitrary units, and may be
fractional. An useful future addition may be to drop the requirement for the
ARM column, and to assume that the distance is from the left end of the
chromosome in the absence of the ARM column.

These annotation columns need not be provided by the currently
loaded Generalized CDT; as discussed later in the configuration section, they
can be specified in another Generalized CDT, and be matched up using the

unique identifier.

125

A special case is represented by yeast ORFs. If the required annotation
columns are missing from the file, but the locus names conform to yeast orf
name conventions, they are parsed to extract the required information,

assuming that each gene occupies one map unit.

Karyoscope Configuration

The configuration of the Karyoscope display is complex, as there are
several considerations in addition to the microarray data, such as the actual
coordinates of the loci, the desired averaging, and what exactly to display.

The most immediate settings are provided by the components in the
configuration panel. Here, the user can select the experiment to display,
navigate to the previous or next experiment, set the size of the canvas, and
set the number of pixels allocated to each map unit and value unit. The size of
the canvas specifies exactly the pixel dimensions of the drawing surface. The
pixels per map determines how long the chromosomes are in the horizontal
direction. The pixels per value determines how many pixels correspond to a
value of 1 in the vertical bars.

Clicking the “Display” button, or choosing “Settings->Display” from the
menu will display the popup in Figure 2-7 part A. From this dialog, the user
may specify what to draw for each locus, whether to use scale lines, the color
settings, and how to render genes which are selected according to the shared

CdtSelection object. The checkboxes on the first row specify whether to

126

include a connecting line between the tips of the loci, and whether to draw
colored bars for each locus. The next row contains checkboxes to indicate
inclusion of fold-change lines above and below the genome line. This detail
makes it easy to spot loci over a particular fold change. The user must
additionally specify the base of the expression data, as well as the maximum
number of scale lines to draw. The third row contains color selection widgets
similar to that in the Dendrogram and Scatterplot configuration, with the
distinction of having more colors to configure than the other two. The “Up” and
“Down” colors specify the colors in which to draw up and down colored bars,
the “Genome” and “Background” colors specify the color in which to render the
genome line and background respectively, and the “Line” color specifies the
color in which to draw the scale lines and the connecting line.

The much simpler “Averaging” dialog, pictured in Figure 2-7 part B, can
be summoned by either clicking the “Averaging...” button on the configuration
panel, or by selecting “Settings->Averaging...” from the menu. There are a
total of four averaging options. The first is simple no averaging at all,
corresponding to the “No Averaging” button. The next, “Nearest”, averages the
nearest k loci together, including the one in question. If the map coordinates
so dictate, it is possible that all of these loci will be on one side of the current
locus. The third option, “Neighbor”, averages the (k-1)/2 loci on the left and the
(k-1)/2 loci on the right together with the current locus to produce a smoothed

value. In the event that there are fewer than (k-1)/2 loci on a side, fewer loci

127

will be averaged together. The final option, “Interval”, allows the user to specify
an interval of map units around the locus in question. All loci within this interval
are averaged to calculate the value for the locus.

The final set of options, depicted in Figure 2-7 part C, can be
summoned either by clicking the “Coordinates...” button of the configuration
panel or by selecting “Settings->Coordinates...” off the menu. There are three
ways in which coordinates can be set. Clicking on the “Load from File...”
button summons a file dialog similar to that in Figure 2-2 part E. The user then
may select a Generalized CDT file which will be parsed in search of the
required annotation columns. Selecting “Extract from Cdt” will cause Java
Treeview to attempt to extract the annotation columns from the data model
itself. Finally, the available presets are listed by name. Clicking one of these
buttons will cause the corresponding Generalized CDT file to be loaded, much

as if it had been selected using the “Load from File...” button.

Karyoscope Creation

The Karyoscope display is created by selecting “Analysis->Make
Karyoscope” from menu. In a similar sequence to that of the earlier displays,
this causes allocation of a View node which is then passed into the
KaryoPanel constructor. The newly created KaryoPanel is then added as a tab

to the LinkedViewFrame.

128

Karyoscope Implementation

The Karyoscope display is provided by the KaryoPanel container, a
subclass of MainPanel. The KaryoPanel container manages the shared
Genome instance which tracks the locations of the loci, as well as the usual
plumbing to set up and manage the views and menus which all MainPanels
do. Because there are no other components to share data with, the other
configuration, e.g. the averaging and what exactly to display, are stored
directly in the KaryoView class.

The Genome class is the data structure which represents the positions
of the loci. It can construct itself based upon an arbitrary DataModel. First, an
instance of Chromsomelocus is allocated for each row of annotations.
ChromosomeLocus has slots for the original row in the CDT file, as well as the
chromosome, arm and position. The original row number allows the Genome
to link up the locus with the actual expression data and other annotations later
on, as well as determine whether it is selected, since the CdtSelection,
DataModel and the DataMatrix all work with that index. Next, the complete list
of ChromosomeLocus instances are traversed to determine the number, type
and size of the chromosomes. Finally, a Chromosome subclass, either
LinearChromosome or CircularChromsome, is allocated and populated with
loci. Thus, the Genome maintains a list of Chromosomelocus instances in Cdt

row order as well as a list of Chromosome instances, each of which contains

129

the loci sorted by position. This enables fast binary searches to find loci given
position information, and a constant time lookup given the Cdt row number.
Some care must be taken when using a Genome object with a different
DataModel than the one it was constructed from, as is done when the user
specifies an alternative coordinates file. At the outset, we have a DataModel
that contains the actual data and has a particular locus ordering, and a
Genome constructed from a different cdt file which has its own ordering. The
Genome must be updated to reflect the DataModel. First, all loci in the
genome are set to the invalid index “-1”. Next, a hash from unique id to cdt row
number is constructed using the DataModel. Finally, all ChromosomeLocus
instances in the Genome are traversed, checking to see if the unique id is
present in the hash and updating the row index as appropriate. Thus loci
which do not appear in the DataModel are found to be invalid and are ignored.
It should be noted that a visualization for the CircularChromosome
class has been implemented yet, although much of the mechanics, including

averaging, are in place.

Karyoscope Export

Karyoscope export is initiated by selecting “Export->Export to Gif...”
and is configured by the dialog show in Figure 2-7 part D. The only
configuration currently supported is the selection of one or more chromosomes

discontinuously from the list.

130

Description of Summary display

The genesis of the Summary display was a piece of user feedback. The
user wanted to see the gene expression patterns along with the gene names
in the results list of the gene search. Subsequently, | introduced the Summary
display to show a quick view of the gene expression data of the currently

selected genes.

Summary Functionality

The Summary display shows a quick summary of a subset of the data
using components originally developed for the Dendrogram view. A
screenshot of a typical Summary display is shown in Figure 2-8 part A. This
display was produced by searching the gene annotation for the string “PHO”,
selecting all, and creating a summary view. The Cdt file itself was sorted by
the p-vallue from a non-parametric T-test. The p-value itself appears in the
gene annotation, after the gene name. As is indicated in the figure, this display
is composed of the familiar ZoomView and TextView components. All of the
functionality from the Dendrogram display is carried over; thus, letting the
cursor linger over the zoom view will show a tool tip containing the expression
value, and clicking a gene name will open a browser window with more

information about the gene.

131

The main difference between the Summary display and the others is
that is a very lightweight display. It is show in a modeless dialog separate from

the main application, and has no menu items, no configuration, and no export.

Summary Creation

The Summary display is not an independent display. It can only be
created when some genes are selected, and even then only when a
Dendrogram display is active. This is because the Summary display currently
steals its configuration information from the Dendrogram display which was
selected when it was created.

There are two ways in which the user can create a Summary display.
Selecting “Analysis->Make Summary...” will summon the dialog shown in
Figure Figure 2-8 part B. At this point, the user can choose to either make a
summary of the currently selected genes, or to paste in a list of unique ids. In
the future, it might be worthwhile to allow the user to select an arbitrary
annotation column to match on. The second mechanism for creating a
summary view is by pressing the “Make Popup” button on the “Search Gene
Text for Substring” dialog pictured in Figure 2-2 part G. This simply makes a
summary of the currently selected genes, or selecting all matching genes and

then making a summary if none are selected.

132

Summary Implementation

The entire source code for the class which implements the Summary
display, SummaryPanel, is only 126 lines of code. This is partially because of
component reuse, and partially because some of the work to implement the
Summary display involved changing other classes. When the construction of a
new SummaryPanel is initiated, the DendroView class first determines the
indexes of all genes which are to be included in the summary, and populates
an integer array with them. The integer array is called the gene order array, in
that the first element of the array specifies the index into the DataMatrix for the
data in the first row of the summary, the second element specifies the index
for the second row, and so on. This allows arbitrary subsetting and reordering
of the elements in the DataMatrix, but in the context of the Summary display, it
is only used to make a subset; the ordering will be the same as in the original
file.

This ordering, as well as the existing ArrayDrawer, HeaderInfo and
DataMatrix are used to construct and configure the SummaryPanel, which is

then added to a dialog and displayed.

Concluding Remarks

In this thesis | have established a correspondence between batch and
chemostat cultures at the gene expression level. | have also contributed new

datasets which describe the response of batch cultures to limitation for several

133

nutrients. Some of these responses are predicted from the literature, and
some are novel. There are further questions of interest regarding gene
expression studies in the chemostat; although there is no stress response in a
steady state chemostat, what effect would varying the conditions have? For
instance, can we use a chemostat to unfold a temperature sensitive protein
without incurring the stress response? What effect does changing a drug
concentration slowly instead of quickly have?

| have also described Java Treeview, a new microarray data
visualization tool which greatly assists in the interpretation of genome-scale
data. These innovations set the stage for more carefully controlled gene
expression studies in yeast, with the prospect of more comprehensive studies

of responses common to all eukaryotes.

134

Code Listing 2-1: ConfigNode.java

jEdit - AUsersfalok/Desktopsjovas/LinkedView’src/edu’stanford/genetics/treeview/Confighode . java
A% BEOTN_HEADER Jova TreelView
L3

* fduthor: remote §

* SRCSFile: Confighode. jova,w §
* fRevision: 1.3 %

& * S0ate: 2083/86/23 BE:93:87 %
SNome: §

T T

This file is part of Jova TreelView
Copyright () 2801-2083 Alok Saldanmha, All Rights Reserved.

This software 15 provided unger the W/ GPL Version 2. In particular,

4 4 4 4 4 4 4 3

1) IF you modify a sowrce File, make g comment 1In it comtaiming powr nome and the date.

* 23 IF you distribute a modified wversion, you must do it wnder the GPL 2.

16 * 3) Developers are encouraged but not required to notify the Jova TreeView maintoiners at
alokBgenome. stanford. edu when they make o useful addition. It would be mice 1f significant
contributions could be merged into the main distribution.

- .

I8 * A full copy of the license can be found in gpl.txt or online ot

13 ® http: /A, gnu. orgslicenses gpl. txt

TR Y i =

.
Z1 * END_HEADER
22 4

3 pockoge edu.stonford. gemetics. tresview;

l_i’ /‘4

27 * Defines an interface for storage of key-walue pairs. Essentially oIl the configuration information
for Java TreeWiew is stored wsing this interface. You will encounter bwo implementing classes. The
first, most common one is an ITnner class of XmlConfig, which simply presents an interfoce to edit an
aml document. Thus, when you mess with that ianer class through this interface, you're actually
writimg KWL, The second is the Dummelonfighode, which you can use Ffor prototyping stuff or IF you Just
want to wse this interface to store key-valuwe pairs in o non-persistant fashion.

e e

29 * The easiest way to moke on object persistant across different runs of the program is to bingd it to ¢

Confighode returned by XolConfig (which is bound to a Ffile on disk), and then just store all state

informaion in the Confighode. Whenever the Xmilonfig is sawed, i1t will automatically sove the state of

your ofiject. just maoke sure you save it before you exit!

L3

31 * Saguthor Alok Saldanha <olokBgenome. stonford.edu >
3z * Bversion JRevision: 1.3 § SDate: 2003BE/23 @5:83.87 §

33 4

34 public obstract interface Configdode {

a5 1

36 * cregte and retwn o subnode which has the ingdicated name
a7 *

) * Eparam name name for subnode

E:) * Ereturn newly created subnode

48 =

41 public abstroct Confighode create (String mome);
42

43

A4 A

45 * fetch all nodes with the mame

46 *

47 * Eparam name type of nodes fo search for

B/21/83 11:85 AM :: poge 1

135

Code Listing 2-1 continued

“

jEdit - AUsersfalok/Desktopsjovas/LinkedView’src/edu’stanford/genetics/treeview/Confighode . java
* Ereturn array of matching nodes

o'

public abstract Confighode[] fetch(String name);

el
* fetch First node by mame

-

* Bparam string type of node to search for

* Braturn first matching node

o'

public abstract Confighode fetchFirst (String string);

S
* remove particulor subnode

-

* Eparam confighode node to remove

*/

public abstract woid remove (Configdode confighodel;

FLLl
* remove all subnodes with o given mname

-

* Bparam string name of nodes to remove

*/

public abstract woid removedll (String string);

FLL
* set attribute to be last in list

-

* fparam confighode confighode to be made last of children
o'

public abstract woid setlost {Confighode confighodel;

_r’“

* determine 1f g particular gttribute is defined Ffor this node.
-

* Eparam string name of attribute

*

public boolean hosAttribute {String string);

Pl
* get a dowble attribute

-

* Eparam string name of attribude

* fparam o o default walue to return
* Braturn The attribute walue
o4

public abstract double getAttribute (String string, double d);

FLLl
* get an int attribute

B/21/83 11:85 AM :: poge 2

136

Code Listing 2-1 continued
jEdit - Alsers/alok/DesktopsjovasLinkedVien/src/edusstanford/genetics/treevien/Confighode . java

-
* Bparam string name of attribue

* Epagram | default int walue
* Breturn The attribute walue
o d

public abstroct imt getAttribute (String string, ik i};

P
* get a String attribute

-

* Eparam stringl attribute to get

117 * Bparam string? Defoult wolue

118 * Breturn The attribute waolue

119 o'

173 public abstroct String getAttribute (String stringl, String string2);

set a dowble attribute

Bparam gttt name of attribute
Bparam val The new attribute wvalue
Bparam gval The default walue

public abstroct woid setAttribute {String ott, double yal, double dwall;

int attribute

att mame of attribute
vl The new attribute value
aval The default walue

public abstract woid setAttribute (String ott, int val, int dwal};

set a String attribute

Bparam gttt name of attribute
Eparam val The new attribute value
Boaram gval The default walue

public abstract woid setAttribute {String ott, String wal, String dwol);

B/21/83 11:85 AM :: poge 3

137

Figure 2-1: Example XML Configuration Tree

A

MullMap
type="HNull*

FillMap
type="Fill*

NullMap FillMap
type="Null" type="Fill*

FlllMap
type="Fill"

FillMap
type="Fill*

Colorset
Neo attributes

GlobalXMap
HNe-attributes

%]
ColorExtractor
Mo attributes

(from first View)

Height Height
value="0.18" wvalue="0.0625

Width [IN—TTT
value="0.18" value="0.27"

Spacing of Dendrogram Panels

TextView
Mo attributes

Array| View 5 |
Mo attributes

Panel-specific Configuration

UrlExtractor
Mo attributes

ArrayUrlExtractor
Mo attributes

R A
DocumentContig
Nao attributes

138

Figure 2-1 continued
C

AxisParameter
type="1"
value="5156.0"

AxisParameter
value="0.0"

AxisParameter

AxisParameter
type="3"

AxisParameter
type="1"

AxisParameter
value="§.13e-5" type="2"
AxisParameter AxisParameter
value="3.56e-7" type="3"
EN: 7

Axisinfa
type="y"

Color
type="Background®

type="Data"

Settings for X axis Settings fpr ¥ axis Color Settings

W &
ScatterView
Mo attributes

(from second View)

AxisParameter

type="1"

AxisParameter

Color
type="Background®

AxisParameter AxisParameter

e="1" value="12.16"
value="5159.0"
AxisParameter AxisParameter
AxisParameter AxisParameter value="-13.05" type="3"
value="0.0"
Ny 3 X P
ScatterColorSet

name="BlackBG"

Color Settings

ScatterView
Ne attributes

(from third View)

Figure 2-1. This is a graphical depiction of the contents of a typical Xml
configuration file holding per-document settings. The root node is labeled
“DocumentConfig” and can be found on the second page. It is the only node
with no parent. When Java Treeview reads in this file, it simply parses it into
an Xml tree. The root node is requested by LinkedView, which uses the Views
node to determine which views to display. It then constructs the views, and
binds them to the View nodes. This continues recursively. Thus, a single
store() call can save the entire configuration, even though there is no
centralized configuration object.

139

Code Listing 2-2: XmIConfig.jtv

jEdit - fUsers/olok/Desktop/Alok/Research/TWFigures/EmlConfig. jtv
=DocumentConfig =
<UrlExtractors = <ArromdlrlEctractory =

1 <\Miews selected ="2"=

5 =Miew type="Dendrogran" =

& <ColorExtroctor =<ColorSets =</ ColorExtroctor =

7 <ArroyDromery” > <TextView' = <ArroyNomeVies >

i <(lobal¥Mop > <FixedMap type="Fixed" scole="15.@" /> <FillMop type="Fill". > <NullMop type="Hull™ . =
</Global¥Map =
<(lobal¥Mop current ="Fill" > <FixedMop type="Fixed" /> <FillMop type="Fill" /> <NullMap type="Hull™ .=
</LobalYMap =
<ZoomiMap = <FixedMop type="Fixed™ /> <FillMop type="Fill™ /> <MullMop type="Mull"/ > </ Zoom¥Map >
<ZoomiMap > <FixedMop type="Fixed™ /=<FillMaop type="Fill" /> <NullMop type="mMull" /> </ZoomfMap =
<Height walue="g_ 1875" /> <Height wvalue="@_ @c25" /> <Height walue="g_ 75" />
<Midth value="0 1818181877367859" /> <Midth wolue="@ 27272728085517883" /> <Midth
volue="§_27272728A85517883~ /> <Width wolue="9 Z7Z7FZFZ2R0ESSL17ERL" />

1 wMiews

1 <Wiew type="Scatterplot” yhype="2" xindex="-1" yindex="2"> <ScotterView =

17 <ScotterfolorSet mnome="BlockBG" >
<Color type="Background” /> <(olor type="Axis" hex="#FF@@pa~ /> <(olor type="Data" /> <Color
type="%Salectad” />
< AootterColoriet =
<AxisInfo type="x"=
<MocisParameter wvalue="@.@3" /> <AxisPorometer type="1" wvalue="51%3 8" /> <AxisParameter type="2"/>
<MxisParameter type="3"/-
< AaisInfo =

; <AxisInfo type="y"=>

24 <fisParameter wvalue="-13 @532305160234" > <hxisParameter type="1" walue="12. 1629664719857 /=
<hocisParameter type="7"/> <AxisPorometer type="31"/,>

75 <fAaisInfo >

</SootterView = < Views

<Miew type="Scatterplot" yhype="2" xindex="-1" yindex="3"> <ScotterView =
<ScotterfolorSet nome="BlackBc" =
<Color type="Background” /> <Color type="Axis" hex="#FFAEEA~ /> <Color type="Data" /> <Color
type="%alected” />
</ScotterColorSet =
<AxisInfo type="x">
<forisParameter wvalue="@.@" /> <AxisPorameter type="1" wvalue="515%6.4" /> <ldisParameter type="72"/»
<horisParameter type="3"/=
! </AmisInfo >
5 <AxisInfo type="y">
<focisPorometer value="3 SE760E39C105Q4E-7" /> <lxisParameter type="1" walue="3 12887181775444E-5" /=
<lorisParameter type="72"/> <AxisPorometer type="1"/>
7 =/AxisInfo >
</Scatteriiew » </ Views
o Views =
10 < DocumentConfig =
i1

8/21/83 4:87 MM :: poge 1

Code Listing 2-2. Code listing corresponding to Figure 2-1.

140

Code Listing 2-3: DataMatrix.java

jEdit - Alsersdalok/DesktopjovasLinkedview/src/edu/stanford/genetics/treeview/DataMatrix. java

package edu.stanford. genetics. treeview;

public interfoce DotoMatrix {
double getValue {int row, int coll;
int getMumRow ();
int getdumiol ();

}

8/21/83 7:38 MM :: poge 1

Code Listing 2-3. DataMatrix interface, which provides access to the matrix of
gene expression data.

141

Code Listing 2-4: HeaderInfo.java

jEdit - Alsersdalok/DesktopjovasLinkedview/src/edu/stanford/genetics/treeviewHeaderInfo. java

packoge edu.stanford.genetics.treeview;

4 /ff

G * Interface to access header info about genes or arrays.

X -

7 * Bguthor Alok Soldanta <olok@genome. stanford.edu =

; * Bversion $Revision: 1.3 § Shote: 2983/88-81 19:89:23 %
L7

7 public imterface HeaderInfo {
/1"

* Gets the header info for genedarray 1
-

14 * Bporam 1 index of the header to get
* Breturn The array of header walues

1 v

17 public String[] getHeader (int i};

/1"
* Gets the header info for genedarray 1, col nome
-
* Bporam 1 index of the headar to get
; * Breturn The array of header walues
24 v
» public Strimg getHeader Cint i, String namel;

/i‘f

* Gets the names of the headers
L

* Breturn The list of names
v

public Strimg[] getNomes {J;

/1"
] * The mumber of headers per gene.
-
i public inmkt getMusNames (3

/1"

1A * fets the number of sets of headers. This will geperally be the mumber things which hove headers,
i.e. mmber of genes or number of arrays.

e

public int getMusHeaders {J;

4 /1"

Gets the index associated with o particular mawe.

Note that some header info classes may hawve special ways of mopeing
mames to indexes, so that the gethames{) array at the returned index
mry not actuwally match the naome argument. This is porticularly tree for
Fields like YORF, which may also be UID, etc...

*
L
L
L
*
L

* Bparam pame A name to find the index of

* Breturn The index walue
- 1‘/
24 public imt getIndex (String mnome);

8/21/83 7:37 MM :: poge 1

Code Listing 2-4. Code Listing of HeaderInfo interface, which provides access
to the information in gene and array headers.

142

Code Listing 2-5: DataModel.java

jEdit - AUsers/alok/Desktop/jova/LinkedView/'src/edu/stanford/ genetics/ treeview/ DataModel , java

packoge edu.stanford.genetics.treeview;

import jova.owt Menultem;
| /ff
5 * This file defines the bare bones of what needs to implemented by a data model
£ which wants to be wsed with o VWiewFrame and some ModelViews.
7 -
* Bauthor Alok Soldanta <olok@genome. stanford.edu =
i+ * Bversion Bversion fRevision: 1.6 § $Dote: 2893-03-01 19:89:23 §
18 =

h public interface DaotaModel {
13 public final static double NODATA = -lEQ@@ees ;
14 public fimol stotic double EMPTY = -ZB0800880 ;

15 .

17 * Gets the gocument(onfig attribute of the Datalodel object

.
* wvalues stored in the <code=Confighode </tode>s of this <code=Xmlfonfig </code> should be persistent
across multiple openings of this DataModel.

28 * Ereturn The documentConfig wvalue

21 s

2z public XmlConfig getDocumentConfig {J;

25 Fisd

* Gets the file path or wrl which this <code>DotaMode] </code> mas built from.
- .

* Ereturn String representation of file path or url

22 s

@ public String getSource (3

/OO

E2! * Gets the fileSet which this <code>DatoMode]l </codes wos built from.

Ic *

* Ereturn The actugl <codexFileset </codes which generated this <codexDataMode] </code >
37 L7
public FileSet getFileSet (3

3 I

* Gets the HeaderInfo associated with genes Ffor this Daotalodel .

|. L

H * There are two special indexes, YORF and NAME, which mean the wnigue id column and the description
colum, respectively. See TWodel. TWodelHeaderInfo for detgils.

15 .

16 public HeaderInfo getGeneHeaderInfo (3

| Y /1"

Sa * Gets the HeaderInfo associated with armays for this DotaModsel.
51 L4

52 public HeoderInfo getArrayHeaderInfo (3;

S

8/21/83 7:39 MM :: poge 1

143

Code Listing 2-5 continued

jEdit - Alsers/alok/Desktop/jova/LinkedView/sro/edu/stanford/genetics/ treeview/ DataModel . java
* This not-so-object-oriented hack is in those rare instances where

it 15 mot
anough to know that me've got a DatoModel.

L
L
* Breturn
4
public String getType O3;

a string representation of the type of this <code>DotaModel </code >

Pl
L

Gets a memw item which pops up o window with some stats for this <code»DataModel </code> object
L

* Breturn A MenuItem, complete with listener.
L
public MerwuTtem getStotMenuItes (3
/rr
* returns the datamatrix which wederlies this doto model,
* typically the matrix of megsured intensity ratios.
W
public DaotoMatrix getDataMatriz J;

8/21/83 7:39 MM :: poge 2

Code Listing 2-5. DataModel interface, which describes the methods which are
required for other classes to create views of the data.

144

Code Listing 2-6: MainPanel.java

jEdit - AUsers/olok/Desktop/jova/LinkedView/src/edu/stanford/genetics/ treeview/MainPanel . java

I package edu.stanford.genetics.treeview;
2 import jova.owt.Menu;

| /ff

5 * implemanting objects mre expected to be subclasses of conponent. The purpose

+ * of this class 1s to provide on interfoce for LlinkedWiew, whersby different views

7% can be added to g tabbed panel. This will be useful for other gpplications where
* you want to manipulate gemeric wview.
-

A * Bouthor Alok Saldanto <olokZgenome. stanford.edu =

11 * Bversion S$Revision: 1.4 § SDate: 2983/86-27 @8:39:03 %

1z =

1% public interface MainPanel £

14 e

15 * This syncronizes the sub compnents with their persistent storage.

. .

17 public void syncConfig (;

19 /1"

28 * this method gets the config node on which this component 1s baosed, or null.
Z1 '

22 public Comfighode getConfigMode (3

24 Pl

25 * Add items related fo settings

. .

27 * Bparam menu A menw to add items to.
28 v

2% public void populateSettingsMenu (Memu menu);

.l_' /1"

* Add items which do some kind of analysis
_I Ll
35 * Bparom menu A menu to add 1tems fo.
15 Lr
37 public void populatefnalysisMenu (Memu menu);

i e

11 * Add items which allow for export, if any.
1z .

13 * Bporam menw A menu to add items fo.

&l e

15 public void populateEsportMeru (Meru menu);

18

19 * ensure @ particular index is visible. Used by Find.
A -

51 * Bporam 1 Index of geme in cdt to moke wvisible

L2 L

52 public woid scrollTelndex (int i3,

54 }

8/28/83 2:21 MM :: poge 1

145

Code Listing 2-7: ModelView.java

jEdit - AUsers/olok/Desktop/jova/LinkedView/'src/edu/stanford/genetics/ treeview/ModelView, java

? package edu.stonford.genetics. treeview;
1

5 import jovax.swing.®;

i import jova.owt. *®;

import jova.awt.event.*;

import jova.awt.image.*;

18 e
* syperclass, to hold info and code common to all model wiews
.

1 * This currently consists of buffer monogement, stotus and hints panels.
14 * Imterestingly, but necessarily, it has no dependancy on any models.

15 =
16 public abstract class ModelView extends JPgnel implements jovo.util.Observer,
17 Mouselistenar {

protected ViewFrome viewFrane = null;
19 protected MessagePanel hint = null;
28 protected MesszaogePonel status = mwll;
Z1 protected boolean hasMouse = false;
£3 A* here so thot subclass will work with BufferedModelliew too *7°
24 protected boolean of fscreenValid = false ;
25 protected boolean offscreanChanged = false;
26 protected Dimension of fscreenSize = null;
27 A
28 * holds actwal thing to be displayed. ..
29 b

38 protected IComponent pomel;

i protected ModelView (3 {
33 super (false J;

4 setBackground (Color.white);
=}

.I_-. FLLl
g * wientame, retwms name of view suitable for printing
* perhaps this showld be replaced by reflection?

»

1 * Breturn String contoining name of view.
12 L
13 obstract public String wviewName (3

15 public woid setViewFrame (ViewFrame =) {viewFrame = m;}
16 public ViewFrome getViewFrame (3 {return wiewFrome; }

17 public woid setHintPanel (MessagePanel h) {hint = h;}

18 public woid setStatusPanel (MessogePomel =) {status = s5;}

58 private String[] default_hint = null;

c1 public String[] getHints (3 {

LY, if (defoult_hint == mill) {

3 default_hint = new String [] {"Mo hints for " + vieaNome (J};
= }

return default_hint;

8/21/83 8:47 MM :: poge 1

146

Code Listing 2-7 continued

jEdit - AUsers/olok/Desktop/jova/LinkedView/'src/edu/stanford/genetics/ treeview/ModelView, java
5E private String[] default_status = rll;
59 A
a * Strings describing status to user, suitable for display.
*
* Breturn Arrgy of strings, representing status
L
public String[] getStatus {3 {
if (defoult_stotus == rull) {
default_status = new String []
{"Ho status info for " + viewdlame (3}

. s R v =

el]

return default_status;

5}

73 public IComponent getComponent (3 {return pamel; }

-

Update the double buffer, 1F buffered
Otherwise, Just called by pointComponent to paint the main component.

called only when offscreen buffer is marked as imvalid, or if
the onscreen size has changed.

11111111‘}

mote: now actuglly called by pointcomponent to update the swing double buffer.

s
obstract protected woid updateBuffer (Grophics g);

FLLl

31 * This is o stub so that components which work with this will olso work with the ModelVWienfuffered.
92 * importantly, oo buffer is ever actwally allocated.

93 L

a4 public synchronized wold pointComponent (Graphics g} 4

a5 Rectangle clip = g.getllipRect (3;

£ g.setlolor (Color white);

g. FillRect (clip.x,clip.y,clip.width, clip.height};

Dimension regSize = getSize (J);

if (regSize == rull) { return;}

A4 monttor size changes

183 if ((offscreeniize == nulll) Il

(reqSize.width != offscreenSize width} |11

(reqSize.height != offscreenSize.height)y {
of fscreenChanged = true;
offscreenfize = regSize;

}

if (isEnabled (33 {
offscreenValid = false;

.. uvpdateBuffer (gl;

113 3 paint{omposite (g);
114

8/21/83 8:47 MM :: poge 2

147

Code Listing 2-7 continued

jEdit - Alsersfalok/Desktop/jovaslinkedView/sro/edu/stanford/genetics/ treeview/ Mode1View. jova

A4 Bystem. out. printInd"Exiting "o viewame(} + " to clip "+ clip)
}

Jﬁf

This call is bto be wsed to aod o quick addition to the
component which you don't want to put on the dowblebuffer. The
composite cowld potentially be another buffer.

Currently, this is only wsed by globalview for adding the zoom
rect and focus rect.
L
public woid paintComposite (Graphics g) {
return ;

}

public woid adddotify () {
super . addiotify C);
}

Jﬁf
* This does the following:
* 1} reguests Focus
* 2} setz status and hint panels appropriately
* 3) keeps track of wmhether we hove the mouse.
L
public woid mouseEntered (MouseEvent) {
if (viewFrome. windowhctive (00 {
requestFoous
if (hint != rwll) {hint. setMessoges (getHints {J0; }
try {
if (status != null) {status. setMessages {getStatus {37;}
} cobch (Exception ex) {
JlptionPane. showMessogeliaolog (this, ex. toString (00;

}
}
hasMouse = true |
H
{UO
* keeps track of when mouse not present.
L

public woid mouseExited (MouseEvent e} {
hasMouse = false;
H
A* g bunch of stubs so me can claim to be o Mouselistemer %/
public woid mousellicked (MouseEvent &) {}
public woid mousePressed (MouseEvent &) {}
public woid mouseRelessed (MouseEwent &) {3}
public woid mouseMoved (MouseEvent e) {}
public woid mouseDrogged (Mousebvent e) {3
public woid keyReleased (KeyEwent =) {}
public woid keyTyped (KeyEwvent o) {}

8/21/83 8:47 MM :: poge 3

Code Listing 2-7. ModelView is an abstract class which describes the methods
which must be implemented in order for a MainPanel to effectively use a View.
It also provides a lot of useful functionality, and Views which use it can easily

148

acquire persistent offscreen buffering by implementing a subclass,
BufferedModelView.

149

Code Listing 2-8: ViewFrame.java

jEdit - Alsers/alok/Desktop/jovas/LinkedView/sro/edu/stanford/genetics/ treeviewNViewF rame . jova
package edu, stonford. genetics. treseview;

import
import
import
import
import
import

import

S

* Ay frame that worts to contain UYginPorels must extend this.

L3

Jowa.awt.*;
Jowa.owt . ewvent.®;
jowa.io.*;
jowa._net.*®;
jowa.util.*;
Jowax . swing.*;

edu.stanford. genetics treeview. dendrovies ColorPresets;

* Saguthor Alok Saldanha <olokBgenome. stonford.edu >

* Bversion Bversion S$Revision: 1.11 § $ate:r 28930822 16:38:32 %

o'

public abstract class ViewFrome extends JFrome implements Observer 4

A0 must override in subclass. ..

Ll
* This is5 to enswre that we can observe the Mainfanels when they change.
-

* fparam observable The MginPanel or other thing which changed.
* Eparam object Generally null.
./

public abstroct woid update (Observable observable,

FLL

-

Sets up a <codesFileMru</codes> using a particular config node.

Object object);

* This <codexFileMry</code> can later be edited or wsed to show o mru menu.

-

* Snaram

v

protected woid setupFileMru (Configdode fileMrudodey £
FileMru = new FileMru (3;
FileMru. bindConfig (fileMrubode’;
try {

FileMru. remowveMoved (0]

} catch (Exception &) {

]

LogPanel. println ("problem checking MRU in ViewFrome comstructor:
e.printStackTrace (J;

FileMru. oddObserver (this);
fileMru. notifylbservers (); /dsends us message

* Eparam rectangle

*r

Centers the frame onscreen.

private woid center (Rectangle rectangle) {
Dimension dimension = getSize ();

B/22/93 12:17 PM :: page 1

150

fileMrufNode Mode which will be bound to the FileMru

"+ e toString {03;

A rectangle describing the outlines of the screen.

Code Listing 2-8 continued

jEdit - AUsers/alok/Desktop/java/LinkedView/src/edu/stanford/ genetics/ treeview/ ViewFrame , java
setlocation {{rectongle.width = dimension.width) # 3 + rectongle.x, (rectangle. height -
dimension.heighty # 3 + rectongle.y);

= A** Determipes dimansion of screen and centers frame onscreen. %

B2 public woid centerOnscreen () {

B3 A4 trying this for mac. ..

B4 Toolkit toolkit = Toolkit. getDefoultToolkit (J;

65 Dimension dimension = toolkit. getScreenSize ()

=] Rectangle rectangle = new Rectangle {dimension);

B A4 XXX should drog out of global config

setSize (rectangle.width * 3 / 4, rectangle_height * 4 / 53;

Ta center {ractanglel;

71 }

74 A** Sets g listener on self, so taht we can grob Ffocws when activated, ond close owrselves when
closed. */

75 private woid setupWindowListenar (3 {

7B addiindowlistener

77 new Windowhdapter (3 £

78 public woid windowhictivoted (WindowEwvent windowEvent) {

7 setWindowictive (true);

}

83 public void windowClosing (WindowEwvent windowEvent) §

closeWindow ()
}

public wvoid windowDeactivoted (WindowEwent windowEwent) {
setMindowhctive (false);

}
I3}
2}
a4
a5 i
£ * Constructor for the ViewFrame object
a7 * Lats title and window listeners

a_.‘_ -
g * Eparam title Title for the viewframe.
180 o

181 public ViewFrame (String title) {
187 super (titlel;
183 setupiindowlistener (J;

}

J** construts on untitled <codesViesframe </codes */
public ViewFrame () {

super ()}

setupiindowlistener (3]
}

B/22/83 12:17 PM :: poge 2

151

Code Listing 2-8 continued

jEdit - AUsers/alok/Desktop/java/LinkedView/src/edu/stanford/ genetics/ treeview/ ViewFrame , java

FLLl
* Keep track of when active, so that clicks don't get passed through too mech.
-

* Bparam flag The new windowlctive alue

o

protected woid setWindowictive (boolemn flag) {

windowdctive = flag;

171}
124 A
125 * HKeep track of when active, so that clicks don't get passed through too mech.
- -
* Breturn True if window is active.
*

public boolean windowtctive (3
return windowdctive;

}

134 A** Kesp track of whem active, so that clicks don't get passed through too much, *
125 privaote boolesn windowbctive;

A** close window cleanly.
* couses documentlonfig to be stored.
L4
public woid closeWindow (3 {
try {
DotaModel dotoModel = getDataModel ()
if CdatoModel != rulld
¥ml{onfig document{onfig = dotaModel. getDocumentConfig (0
if (documentConfig = nully £
documentConfig. store (J;
}
}
} cotch (Exception &) {
System.out. println ("ViewFrame.closeWindow() Got exception: ™ + e);
}
dispose (};

ol
* required by all <codexModelPanael </codess
-

* Ereturn The shared CdtSelection ofiject.
=

public CdtSelection getCdtSelection (3 {
return cdtSelection;

168 * used by date model to signol completion of loading.

B/22/83 12:17 PM :: poge 3

152

Code Listing 2-8 continued

jEdit - AUsers/alok/Desktop/java/LinkedView/src/edu/stanford/ genetics/ treeview/ ViewFrame , java
* The <code>Vienframe </code> will react by reconfiguring it's midgets.

-

1 * Bparam b The new looded wvalue

172 */

173 public abstroct woid setlocded (boolean b},

FLLl

* retwns special nodoto wvalue.

* generally, just cribs from the <codesDotaModel </codes>
-

* Ereturn A special double which means nodota owolloble.
*

public abstract double nolota();

Ll

* retuwns the UrlPresets for the views to make wse of when configuring Ilinking
* for genes

-

* Braturn The shared <codeslrlPresets </code> object for genes

o

public abstract UrlPresets getGenelrlPresets (3

FLLl

* retuwns the UrlPresets for the views to make wse of when configuring Ilinking
* for arragys

-

* Ereturn The shared <code=[rlPresets </code> ohject for arravs

o'

public abstract UrlPresets getArrayUrlPresets (J;

FLLl

* retuwns g ColorExtractor for the wiews bo moke use of when drawing color maps
* of array wvalues.

-

* Ereturn The shared <codex(olorPresets </code> object

*/

public abstract Colorfresets getColorPresets (3;

FLLl

* Gets the looded attribute of the ViewFrame ofiject

-

* Ereturn True if there 15 currently a model logded.
*/

public abstract boolean getlLoaded)]

r
I il r gy =

th

Ll
* Gets the shared <code>(ataModel </code>
.
224 * Ereturn Gets the shared <codeslotaModel </codes
225 o4

B/22/83 12:17 PM 1 poge 4

153

Code Listing 2-8 continued

jEdit - AUsers/alok/Desktop/java/LinkedView/src/edu/stanford/ genetics/ treeview/ ViewFrame , java
public abstroct DatoModel getDotoModel (J;

FLLl
* Should scroll all MainParmels in this view frame to the specified geme. Default
* implementation does nothing.

-

* Eparam i geme index 1n mogdel to scroll the mainpanel to.

*

public woid scrollTolndex (int i3 {

A** The shared selection objact *
CdtSelection cdtSelection = null;

Pl
* wrl Linking support

-

* Bparam i index of gene who's wel you would Iike to display.
./
public woid displayURL (imk i3 {

displayURL (getlrl (i}3;

FLLl
* Gets the wrl for a particular gene.
-
* Eparam i index of the geme, for the gene's <code=(\r]Extractor </code=
* Sreturn A string representation of the wrl
o
public String getUrl{imt i3 {
if furlExtractor == mulll {

return rull
¥
263 return urlExtractor. getUrl {i3;
264 }
S

* Gets the wrl for a particular array.
-
* Eparam i index of the array, for the array's <codeslrlExtractor </code=
271 * Ereturn A string representation of the wrl
272 o4
273 public String getArrayUrl {int i) {
2 if CarraylrlExtroctor == mill) {
return null ;
¥
return arraylrlExtractor. getUrl {13;

287 * Fops up o browser window with the specified wrl

B/22/83 12:17 PM :: poge 5

154

Code Listing 2-8 continued

jEdit - Alsers/olok/Desktop/java/linkedView/sro/edu/stanford/genetics/treeview ViewFrame, jova
-
* Eparam string String representation of the wrl.
o'
public void displeyURL (String stringd {
if (string = mull) {
return ;
H
try {
URL url = new URL(string};
string = url. toString ();
if (browserfontrol = rudl) {
browserfontrol = BrowserControl. getBrowserControl (0

browserControl. displayURL (stringl;

catch (Mol formedURLException &) {

LogPanel. println {mew StringBuffer (“Malformed wrl: ") append {e). toString O30
catch {IDException &) {

LogPanel. println (mew StringBuffer ("Could not load wrl: "J.oppend {e). toString (37;

i

Pl
* Gets the UrlExtractor for the arrays.
-
* This object 15 uwsed to convert o given array index into o url string. It can be configured to do
this in multiple mays.
-
* Braturn The UrlExtractor for the arrays
o'
public UrlExtractor getArrayUrlExtractor O {
return arrayUrlExtractor;

_r’“
* Gets the UrlExtractor for the genes.
-
* This object 15 used to conwvert o given geme index into a wel strimg. It con be configured to do
this in multiple mays.
-
* Ereturn The UrlExtractor for the gemes
*/
public UrlExtractor getUrlExtractor (3 {
return wrlExtractor;

H

Ll
* Sets the arraylirlfxtractor attribute of the Viewframe object

-

* fparam ue The new arrgylriExtractor wvalue

35 ey
336 public woid setArrayUrlExtractor (UrlExtractor we) {
iy arrayUrlEBxtractor = ue;

B/22/83 12:17 PM :: poge &

155

Code Listing 2-8 continued

jEdit - AUsers/alok/Desktop/java/LinkedView/src/edu/stanford/ genetics/ treeview/ ViewFrame , java
EE I

FLLl
* Sets the wrlExtractor attribute of the Viewframe object
-

* Sparam e The new urlExtractor walue

*/
public woid setUrlExtractor (UrlExtractor we) {

urlExtractor = ue;

obstract public GeneFinder getGeneFinder ()

L
* dpen a diaglog which ollows the user to select o new data File
.

* Breturn The fileset corresponding to the dataset.
b
protected FileSet offerSelection ()
throws LoadException
{
Filefet fileSetl; ¢ will be chosen...

36 JFileChooser filelialog = new JFileChooser ()
363 (dtFilter ff = new CdtFilter (3;
try {
fileliolog. addlhoosobleFileFilter (ff);
A0 will fail on pre-1.3 swings
fileliolog. sethcceptAllFileFilterlsed (true};
} cotch (Exception e} {
A0 hmm. .. I'ID just ossume that there's mo accept all.
filelialog. ocddlhooscbleFileFilter (NeWw jovax.swing.filechooser. FileFilter {3 {
public boolean accept (File) {
return true ;
}
public String getDescription () {
return "Al1 Files" ;
}
134
}
fileliaolog. setFileFilter (Ff);
filelialog. setFileSelectiorMode (JFileChooser. FILES_DMLY);
String string = fileMru. getMostRecentDir);
if (string '= mill) {
fileliolog. setCurrentDirectory (Mew File (stringl}l);
}
int retval = filelialog. showDpenlialog {this));
if {retVal = IFileChooser APPROVE_OPTION} {
File chosen = filelialog. getSelectedFile (3;
fileSetl = mew FileSet (chosen. getMome (), chosen. getParent (J+File.separator]);
} else {
throw new LoadException {"File Dialog closed without selection...” , LoodException.MOFILED);
}
return fileSetl;

B/22/83 12:17 PM :: poge 7

156

Code Listing 2-8 continued

jEdit - AUsers/alok/Desktop/java/LinkedView/src/edu/stanford/ genetics/ treeview/ ViewFrame , java

FLLl
* Rebuild a particular window menu.

-

* Eparam windows the list of windows to odd elements fo.
-

* Add @ menu itewm for each window which grants that sindow the foreground when selected.
.
public woid rebuildWindosMeny (Vector windows) {

windowdenu. removedll J;

Menultem closeltem = new Menultem ("Close Window" , new MenuShortcut (KeyBwent WK _W1D;

closaltem. addActionlistenar (mew Actionlistener (3 {

public void actionPerformed (ActionEvent aoctionEwent) {
closeMindow (J;

In
Manultem newltem = new Menultem (“Hew Window™ , new MenuShortcut (KeyvEwent WE_NID;
newltem. addictionlistener (new Actionlistener (3 {

public woid actionPerformed (ActionEvent actionEvent)

i

createdesFrane (0
i3 B

int max = windows. size();
for (int { = @; i < ma; i+ {
if (i=8){
return ;
}44 just want First 9 windows...
try {
Mernultem foousItem = getFocusItem (windows, 1);
windowMenu. add(foousTtem);
} catch (Exception e} {
System.out. println ("TreeView. rebuildiindowMenu() got esception ™ + e);

:1f~f 3

433 windowMenu. addSeparator {0

434 windowMenu. add (rewItem);

435 windowMeru. add (closeltem);

436 1

437

438 Pl

433 * currenlty, only the concrete subclass has o reference to the goplication, and hance can create ned
fromes.

4448 * perhaps this will change 1f I add an interfoce Ffor the dpp closses.

441 */

447 public obstroct woid createMewFrame (3

A4 P

* Constructs o Menultew which couses the 1'th window to be mowved to the fromt.

-

* Bparam windows @ list of windows

* Bparam i which window to move to the Fromt.

* Braturn a manultem which focuses the 1'th window, or null if more than 9 windows.
.

B/22/83 12:17 PM :: poge B

157

Code Listing 2-8 continued

jEdit - Alsers/olok/Desktop/java/linkedView/sro/edu/stanford/genetics/treeview ViewFrame, jova
private Mernultem getFocusItem (Wector windows, int i3 {
int pl =1+1;
if (pl > 9 {
return null ;
1
finol ViewFrame source = (ViewFrame} windows. elementdt (i7;
String nome;
if (source. getloaded (30 {
nome = spurce. getDataModel (0. getFileSet (3. getRoot (3;
1 else {
nome = "Mot Loaded"
1
Menultem foousItem = new Menultem (nome, mew MenuShortcout (getKey (plldd;
focusTtem. addbctionlistenar
new Actionlistener (3
public void actionPerformed (ActionEwvent &) {
source. toFront ();

3 H
return focusItes;

/ti
* Gets the key corresponding o o particular number.
-
* @param i The number
* Ergturn The WE_blah key value
o'
pmbecbed ink getKe_l',l['i.ﬂt 13 {
switch (i) {
case Q-
return KayEvent VE_B;
oase 1:
return KeyEvent VK_1;
case 7#:-
return KayEvent VK_2;
case 3:
return KeyEvent VK_3;
case 4:
return KeyEvent VE_4;
case 5:
return KeyEvent VK_5;
case 6:
return KeyEvent VE_E;
case 7:
return KeyEvent VK_7;
case §:
return KeyEvent VE_3;

retum KayEwent VK_3;

B/22/83 12:17 PM :: poge 2

158

Code Listing 2-8 continued

jEdit - Alsers/alok/Desktop/jovas/LinkedView/sro/edu/stanford/genetics/ treeviewNViewF rame . jova

A** The global most recemtly used object. 7
protected FileMru fileMru;

A% gllows opening of wrls in extermal browser %7
protected Browser(onmtrol browserControl = null
A** url extroctor for genes *

private UrlExtractor wrlExtractor;

A% url extroctor for arrays 4

private UrlExtractor arraylrlExtractor;

B/22/93 12:17 MM :: poge 18

Code Listing 2-8. The ViewFrame abstract class dictates the functionality
which is common to all ViewFrames, and provides some of that functionality
itself.

159

Figure 2-2: ViewFrame Dialogs

eoe

Frasers

Joswme]| trvap | Trwatoioe | kanentutee | seanertnine | croedinaies |

Mane

rzlily el Pressis

Template

Fielaull®

LD

hetg s genomz-wwwed. stantorcdledu cgl- bind 5TC ¥ lotus .pMoous =HEADER.

YO

PRI . ErOTeDmz. com ' danzbases Y PO repoms FHEADER. homl

CenfroEd

memge s genpracse.mbladu findgene. mriG=HEADER.

SendmIMel

IR ¥ AW ENDME. 20,00 dDg et Bin/www bportera HEADER,

e flaball

‘warm

hoipcs fecacyc. Fangradestems . com: 1555, s ubseing - searchitype=ENIY MESabjert=HEADER |)

Squrce SUID

thord.cu s ql- bin SMOVsouroe, sourctResulifaption=ClaneiDachal coe Gene&cireria=HEADES, |)

Kone

Zaurce LUID

T/ gename st stanterd. coucgl- Bin s SMDV s ource fsourceRedireceLUID. pRAuid = HEADER | T

O

X=X

(s) Cmen)

Prasdts

[Gene | amay | Treetolor [Fuammtoler] scatetcabor | Conrdinates |

Widify Color Presats
HMare

|BlackEG

3
E
E
]

[WhiteB

Murray Dol =

i

| Eackaround |

:
E
E
E
|

;
;
E
s
|

[UserDefined

|Ugeielined

;
;
E
s
|

:
;
E
5
|

fefaults
ramoes 3 0

(rmen O
(men 0
(e)@
e O

Add Srancands

[cone | asmay | Treeteler | karvocatar | Scanercalar [Feaninas|

ame

iy Coordinstes Preseis

rie

Default”

2
sUsarsyalek Deskrop, Tregvisw-0.908 fooondinates SYeastCosedinates. gol @ 8

L
a3

Csaw) CEanca)

8t e Lane List Waker
Genes from YEL1S7W to YNLZSIC selected
NORE
WAL
Fiekdis) bo print: PeAL | Expression Daia? || Heades Lise?
AL
LWLGHT

Eapant Tt | sUsers falok s Des kiopy LLCompR. saree txt
! Rave ! ! LTangel !

160

Figure 2-2 continued

LU paramerricDara E
aca Edit Filis List
Mame [aake Mzl n Leit File List
 CC LE sered.pel Aag 20, 2003 1032 P Msitructureddnatysis s lseng Single!S2Comp.cdi a
" - apnd 1037 sstructuredanatesis sBzens Eingle/ PRCemp.cdt
. — CE FU sarted.pel ;-.qug 26, 2003 ._|:_3: P . Sstructureddnatysis sChanpedd nonparamData/CC LS somed.pcl
E — CC 5P sored.pol g 20, J003 10:32 PE F SStructuredanatysisiChangedd/ parametricData CC LS somedpel |y
— OC UL serred.pel Ay 20, 2003 1032 P Jsiructuredanatysis fChanpedd f parameiricComb, Repressec.cdi 53
— LlCompR somed.pel Ayg 10, 2003 1032 PW Fale
[LzComp sores.pel Aug 10, 2003 L0:AZPM L ("Fing) (Remene) {Remove ALY {Close)
LZComoR somed.col Agg 20, 2003 1032 P =
Formar: [CUT or PLLFiles -+
I Canczl _," (" pen 806 Pick Color for Doen

|. Swalches E’ RCH |

B ®nu[1l
s 1003
ol 1nn
_ﬂ i Search Gene Texi far Substring = A LB 1.
Enter fubkairing: AW] E Case Sansikive’ R_[:
WRLETIW SAME | sulfur aminal T Search) c ey
G [Wext H L
 an)
Cravtaw

S o v Summary Popup)
 Close ¥ =] - W fample Text Sample Test .
, N f b1
e e) (ot)

L1 e

[M= Q& Cantigare Summary

' B Selzomoe Gones

Frasle nne W0 per v
male use Clel=Wan mac {ava i e plal e @

I &)
(e 0
{ aoe Creates Graph
Create Graph:
] ¥ acis: | IMDES o
% deis: | INDEX 2

Figure 2-2. This figure depicts dialog windows which are accessible from most
ViewFrame windows, and in particular the LinkedViewFrame. See the section
entitled “Description of ViewFrame functionality” for details.

161

Figure 2-3: Dendrogram Display

0 O O LinkedView : ;‘Usersfalok,fDesktop,!m;’RésedrcH;mis;c,n'TSP Clu‘st-:ersjchr14_genomé_good.

2% Dendrogram

View Stat
:R_m:v: 1

Status Panel
(Messagelanel)

Array Tree

BEEE ;) e A Hint Panel
[ATRView) : e

(Messagelanel)

Zoom Array Tree
[ATR oomView)

Gene Annotation |

Zoom Pixels |
(ToxtView)

[AoomView)

. h'
CGene Tree
[GTRView

Glabal Pixels
(GlobalView)

Figure 2-3. This figure depicts the Dendrogram view of the Linkedview
application. The container class which fills the window and manages the
borders is DendroView. It delegates drawing of the different areas to other
classes. A descriptive name and the java class is provided for each of the
areas. Note that the same java class is used differently to provide status and

usage hints.

162

Figure 2-4: Dendrogram Dialogs

eoce

Pzl Setnogs
L L
Clobal: |) Fueed Scake| 210 | 8 Fised Szale 2.0
RN Omn
Xx L
Zoem:) Fixed Scake| Lz | 188 Fixed Scale 2.0
ChAN RN
A Conirart: Value: 3.0
[=) Talr
M Fasitter | (B Zem | | BHeganes | | BRssing
Lol
{{ Clase 3
T —
ass Font Serdngs
— - | I
B "Courier B eain L TR

Funl Freergdes Tend

)

U Samings

Fened] e |

eocs

Senting:
_ Draw wertlcaly

Espor ColorBar to Pautscrpe

sl kuses 700
decimals >0
wnrale 120
yezale 120
Use appie kzy o sefect multicle headers
¥ Bounzing Box?

BRax slze: 00 ® 056

i

Total Sre: 117 = 072 lirckl

Export To: || Complt_sorind_celohar s [Irmwne

B Dias Freview

eoe

Expar: Calardar wo CIF
Seimng:

| Deaw vereally
Hnrker ol bies

dedmale 70
zwale 120

Faae 1

S 3Lt KEY D0 SZIECE MUNIple heagers
= 0.72 nrchi

Tulal Fieer 117

aename-weses stanford, edui oge-bes G0 o us, Bl otus s HEADER,

e) cenProcEc) GenomeMet) (wom) Source SUIDY (Source LUIDTY

agsa Expor b2 Fostsaript
Gene Headers Include
. Selecrion Only
Al] Gana Tres
sl =
CReFIGHT [Arrig Tres
M Crata Marris
E Amay Hraders wztale i7.0
1
EWEIGHT yoreale 1200
Usp apple bey iz selis) multiple beaders
® Eeunding st
ok slze F.02 W FALanch
| Below Tree? Tetal Sirw: 761 | 2183 | dimchy
Expom To: | Campk_named] roenn)
G

163

Priselei

¥ Draw Preview

Frossew

ELELL b
e

Figure 2-5: Scatterplot Display and Dialogs

B 0B Uniedvew: fdsersialok!DeskopfalakiRasearchibarcn w5 chemosma Sicred Anaksks/ Changed 3 saramer kCatzFLCama son

Trndragram !- Seatteplnt] Gratepls | Gendy

Configuration Panel

. . . Craw | Selected Lozt B stz
[ScatterMarameterManel)

Scatter Plot
[ScatterView)

P
Misplay

ata Haglay ana Exgsset 10 Gil
% Axis F Axis Fidwista
Win (.0 T Min [2.1775F-7
Max [S1EA.0 Max 03]
Tol Mo optinns. supporied yes
. Mxpored srage wil be ey

— of L

W Eackground | (B Axis Ooaa | (5

(load...) § Sae_ % [Make Prasac’

(EtackBC) wminec) [UserDetined

Save

™ Drew P

wreged 3) paramerric D

{ Cancel

P1Comp. somed g

Browse

164

Figure 2-6: Karyoscope Display

B 08 LoawedWiew : {Usersyalok)Coskiog Aok Resaarchybacth_ve_coamosta
I

Srracureddnalysis Changed 3/ paramercDara FLCoamp_sermed. po

Dendrogram | Seatterplot | Seatterplot | Dendrogram F mmgmpel

Frperment | ¢S54 19 hr &

1 Phisphate Barck v Chernostan O TarisEn

= -
_Same)| Mewt '-* ToGMIE DUT 4N Maust
Feight 244 Anta

Status Panel
(MessagePanel)

Pixcls permap: 0.67RE | Flueis po

" Minplay malws Areraging

Karyoscope Fanel
{KarvoWiow)

B 08 LinedView - jUserssalok/Deskeop, Aok Raszarch/batch vs cremostarSiractured Anzlysls s(Changed3; saramerr kD2 FLComa sarted.ocl
i seamuplor |- Seamrpior |- Dendrogram I- K.Tbﬁbpiq

= ~ = Wt SLACUG
Exgeriment. | vB4n054 19 hr & min Fhosphate Batch vs Chemostat Comparisen Pa)

Cursor is ower CRrombsame & amm L pasitlon 120
GeldF] | respwnse b alive wiress”

. A &
=l g ¥
Pre wme 0 Mexd woaround lecus YRI0TSW

LA

raerwal siee |00
Mean ot 1 lack YFLC
LT TH]

Heghl 7]

Fizuls pa 7.02 Fixpls por Waduw: L0 22

" Display.. ¥ Cosndinaces.., ¥ " Averaging

165

Figure 2-7: Karyoscope Dialogs

8o Display
Draw ™ inez ™ tare
scale Lines _ bowe o below base 20 €5

Calars

 Load... Swee...) (| Wake Preset)

(" HackBC) {whinedG) { MumayCaters) UserDefined) 7 UserDefined

| Highdig Selucted with | Hane

808 Aweaging & D 8 Coondinates
Oy

lizns Cptinns

= Lo from file...)
Mo Averaging |

B Neast: Y 5] [

! Extract fram ot}

) { reast Y
Meighbor 3 -
! interwal o [Clese
—
[Close

Fuprent 1 Gil

Pricaivoe

R

W

®

]
D 1w
11
1z
13
1
1=
1i

Lise shifl groalt i selec) ssdbiple

Tomal Hze: 464 u | 1RIKEIS) G Firaw Priseisw

EXpO To: | User falak Teskiond dlck s Beseanch) bair i Brmrsess

_va_c hemeslal e lured&nalysis CRanged 3 parametri: Data P 1O

Saew Canrel

166

Figure 2-8: Summary Display

Summary of PHO

VLTI, B0
£, FHOE

HOx

TOLOUTA, H
ARG, FHOEY

VLA, FHOB! | chosp o Faiaco, DBIEY, 1
TALTTTW, PHOEE sesakiy codraay', 0407, 1

Gene Annotalion

Heatmap Panel
{ZoomView)

| Text¥iew)

- X5]

-l

Paste one 1D per row
B Mate: uss CIrl-v on mac fava is cress-platfomi

Camced %

167

APPENDIX A
Protocol for Reverse Transcription and Amino-allyl

Coupling of RNA

The following is a slight modification* of a protocol developed by Joe DeRisi (UCSF) and Rosetta
Inpharmatics (Kirkland, WA). [@riginal document can be obtained at www.microarrays.org.

A. [RT Reaction

1. 0o anneal primer, mix 1-2 uyg mRNA with 5 ug of anchored oligo-dT [(dT) 20 -VN] (Operon,
HPLC purified) in a total volume of 18 uL. One reaction for sample mRNA and one for reference
mRNA.

oligo dT 5ug of 2.5 ug/ uL 2uL

mRNA/water 1-2 ug 16 uL

O
2. [Meat to 70C for 10 minutes. ool on ice for 5 minutes.
3. [Add 11.6 uL of nucleotide mix to each of [Cy3 and Cy5 reactions.

Nucleotide Mix for one reaction

5X RT buffer 6.0 uL
50X dNTP stock solution 0.6
DTT 0.1M 3.0
Superscript Il RT (Gibco) 200U/ uL 1.5
RNasin (Gibco, optional) 40U/ uL 0.5

50X dNTP stock solution using a 4:1 ratio aminoallyl-dUTP to dTTP***:

10 uL each 100 mM dATP, dGTP, dCTP (Pharmacia)
8uL 100 mM aminoallyl-dUTP* (Sigma, #A0410)
2uL 100 mM dTTP

**Dissolve 10 mg aminoallyl-dUTP in 170 uL water. [Add approx. 6.8 uL 1N NaOH. [Final pH is
roughly 7.0 using pH paper.

***Altering the ratio of aminoallyl-dUTP to dTTP will affect the incorporation of Cy dye. O

O

1X dNTP final concentration during labeling

500 uM each dATP, dCTP, dGTP
400 uM aminoallyl-dUTP
100 uM dTTP

4. Mhcubate reaction for 1 hour at 42C. [Add additional 1 uL reverse transcriptase and continue
incubation at 42C for an additional 1 hour.

168

B. [Hydrolysis

1. Megrade RNA by addition of 15 uL of 0.1 N NaOH. Ohcubate at 70C for 10 minutes
2. MNeutralize by addition of 15 uL 0.1 N HCI. O

To continue with the amino-allyl dye coupling procedure, all Tris must be removed from the
reaction to prevent the monofunctional NHS-ester Cy-dyes from coupling to free amine groups in
solution.

3. [Add 450 uL water to each reaction.

C. [Cleanup

Add 500 uL neutralized, diluted reaction mix to a Microcon-30 filter (Amicon).
Spin at 12g for 7 minutes.
Discard flow through.

Repeat process two more times, refilling original filter with 450 uL water. @oncentrate to 10 uL.
Bamples can be stored at -20C indefinitely.

D. [Coupling

Add 0.5 uL 1M sodium bicarbonate, pH 9.0 to 50 mM final. @heck 1M stock solution periodically
for fluctuations in pH.

Monofunctional NHS-ester Cy3 (PA23001) and Cy5 dye (PA25001, Amersham) is supplied as a
dry pellet. Each tube is sufficient to label 10 reactions under normal conditions. IDissolve dry
pellet in 20 uL DMSO. [Aliquot 2 uL into 10 single use tubes that are then dried in vacuo and
store desiccated at 4C. NHS-ester conjugated Cy dye is rapidly hydrolyzed in water, therefore, do
not store in DMSO or water. Mecreasing the number of aliquots/dye tube may increase your
signal.

If you have already made aliquots of dye, simply transfer your cDNA in bicarbonate buffer (10.5
uL) to the aliquot of dye. [Alternatively, dissolve Cy dye in 10 ul DMSO and add 1 uL of dye to

10.5 uL of the cDNA reaction. 0% DMSO in the coupling reaction will not affect the chemical
reaction. [Aliquot unused dye and dry immediately. O

Incubate 1 hour at RT in the dark. MMix every 15 minutes.

E. MDuenching and Cleanup

Before combining Cy3 and Cy5 samples for hybridization, unreactive NHS-ester Cy dye must be
quenched to prevent cross coupling.

169

Add 4.5 uL 4M hydroxylamine (Sigma).
Let reaction incubate 15 minutes in the dark.

To remove unincorporated/quenched Cy dyes, proceed with Qia-Quick PCR purification kit
(QIAGEN). Method described below is as specified by manufacturer.

Combine Cy3 and Cy5 reactions.

Add 70 uL water.

Add 500 uL Buffer PB.

Apply to Qia-quick column and spin at 13K for 30-60 seconds. Qoptional: Meapply flow-
though for optimal binding).

Decant flow-through.

Add 750 uL Buffer PE and spin 30-60 seconds.

Decant flow-through.

Repeat PE wash two more times

Spin at high speed to dry column.

Transfer spin unit to fresh eppendorf tube.

Add 30 uL Buffer EB to center of filter and allow to sit 3 minutes at RT.
Spin at 13K rpm for 1 minute.

Repeat elution step again with another 30 uL of Buffer EB.

Pool eluates.

Add 420 TE and apply to fresh Microcon-30 filter.
Spin 12,0009 to a volume of 29 uL or less.

For 38 ulL array hybridization:

29 uL cDNA probe in TE

1uL polyA (10 ug; Sigma P9403)

1uL tBRNA (10 ug; Gibco #15401-029)
7uL 20X SSC

1.2 uL SDS 10%

Heat to 100C for 2 minutes. Olet stand 15 minutes RT. O

Apply 38 ulL to 40K array.
*Slight modifications to original protocol by Mitch Garber and Anatoly Urisman.

170

Preparation of Fluorescent DNA Probe from HUMAN mRNA or Total RNA using Direct
Incorporation (Max Diehn/Ash AlizadehCprotocol; 3/15/01) Modified for Yeast Hybridization

l. Preparing fluoresenctly labeled cDNA (probe):
To anneal primer, mix 2ug of MRNA or 50-100 ug total RNA with 4ug of a regular or anchored
oligo-dT primer in a total volume of 15.4 ul:

Cy3 Cy5
mRNA (1 y/A) XA yA
Oligo-dT (4 g/l) 1A 1A
ddH 20 (DEPC) to 15.4 A to 15.4 A
Total volume: 15.4 A 15.4 A

(2 ug of each if mMRNA, 50-100 ug if total RNA)
(Anchored: 5-TTT TTT TTTTTTTTT TTT TTV N-3)

2. Heat to 65 oC for 10 min and cool on ice.
3. Add 14.6 mL of reaction mixture each to Cy3 and Cy5 reactions:

Reaction mixture | Microliters Unlabelled dNTPs Vol. Final conc.
5X first-strand 6.0 dATP (100 mM) 25uL 25 mM
buffer*

0.1M DTT 3.0 dCTP (100 mM) 25 ulL 25 mM
Unlabeled 0.6 dGTP (100 mM) 25 uL 25 mM
dNTPs

Cy3 or Cy5 (1 3.0 dTTP (100 mM) 10 uL 10 mM
mM, Amersham)

Superscript Il 2.0 ddH20 15uL

(200 U/uL, Gibco

BRL)

Total volume: 14.6 Total volume: 100 uL

* 5X first-strand buffer: 250 mM Tris-HCL (pH 8.3), 375mM KCI, 15mM MgCI2)

4. Incubate at 42 oC for 1 hr.

5. Add 1 ISSII (RT booster) to each sample. Incubate for an additional 0.5-1 hrs.

6. Degrade RNA and stop reaction by addition 15 ml of 0.1N NaOH, 2mM EDTA and incubate at
65-70 oC for 10 min.Of starting with total RNA, degrade for 30 min instead of 10 min.

7. Neutralize by addition of 15 ml of 0.1N HCI.

8. Add 380 ml of TE (10mM Tris, imM EDTA) to a Microcon YM-30 column (Millipore).ONext
add the 60 ml of Cy5 probe and the 60 ml of Cy3 probe to the same microcon.I (Note: If re-
purification of cy dye flow-through is desired, do not combine probes until Wash 2.)

9. WASH 1: Spin column for 7-8 min. at 14,000 x g.

10. WASH 2: Remove flow-through and add 450 ul TE and spin for 7-8 min. at 14,000 x g.0Ot is
a good idea to save the flow trough for each set of reactions in a separate microcentrifuge tube
in case Microcon membrane ruptures.

11. WASH 3: Remove flow-through and add 450 ul 1X TE and 20 ug polyA RNA (10 ug/ ul,
Sigma, #P9403). Spin 7-10 min. at 14,000 x g. Look for concentration of the probelin the
microcon.0 The probe usually has a purple color at this point.OConcentrate to a volume of less
than or equal to the volume listed in the "Probe & TE" column in the table below. These low
volumes are attained after the center of the membrane is dry and the probe forms a ring of
liquid at the edges of the membrane.OMake sure not to dry the membrane completely!

12. Invert the microconlnto a clean tube and spin briefly at 14,000 RPM to recover the probe.

171

Cover Slip Total Hyb Probe & TE 20x SSC (ul) | 10% SDS (ul)
Size (mm) Volume (ul) (ul)

22 x 220 15 12 2.55 0.45

22 x 40 25 20 4.25 0.75

22 x 60 35 28 5.95 1.05

*20x SSC: 3.0 M NaCl, 300 mM NaCitrate (pH 7.0)

13. Adjust the probe volume to the valueOndicated in the "Probe & TE" column above.

14. For final probe preparation add 4.25 A\20XSSC and 0.75 A10%SDS. When adding the SDS,
be sure to wipe the pipette tip with clean, gloved fingers to rid of excess SDS.O0 Avoid
introducing bubbles and never vortex after adding SDS.

15. Denature probe by heating for 2 min at 100 0C, leave at 42C for 15-20 min and spin at 14,000
RPM.

16. Place the entire probe volume on the array under a the appropriately sized glass cover slip.
17. Hybridize at 65 oC for 14 to 18 hours in a custom slide chamber with humidity maintained by
a small reservoir of 3X SSC (spot around 3-6 A3X SSC at each corner of the slide, as far away
from the array as possible).

Il. Washing and Scanning Arrays:

1. Ready washes in 250 ml chambers to 200 ml volume as indicated in the table below. Avoid
adding excess SDS. The Wash 1A chamber andhe Wash 2 chambers should each have a slide
rack ready.OAll washes are done at room temperature.

2.
Wash Description Vol (ml) SSC SDS (10%)
1A 2x SSC, 0.03% | 200 200 ml 2x 0.6 ml
SDS
1B 2x SSC 200 200 ml 2x -
1x SSC 200 200 ml 1x -
3 0.2x SSC 200 200 ml 0.2x -

3. Blot dry chamber exterior with towels and aspirate any remaining liquid
from the water bath.

4. Unscrew chamber; aspirate the holes to remove last traces of water
bath liquid.

5. Place arrays, singly, in rack, inside Wash | chamber (maximum 4 arrays
at atime). Allow cover slip to fall, or carefully use forceps to aid cover
slip removal if it remains stuck to the array. DO NOT AGITATE until

cover slip is safely removed. Then agitate for 2 min.

6. Remove array by forceps, rinse in a Wash Il chamber without a rack,
and transfer to the Wash Il chamber with the rack. This step minimizes
transfer of SDS from Wash | to Wash II.

7. Wash arrays by submersion and agitation for 2 min in Wash |l chamber,
then for 2 min in Wash Il (transfer the entire slide rack this time).

8. Spin dry by centrifugation in a slide rack in a Beckman GS-6 tabletop
centrifuge at 600 RPM for 2 min

9. Scan arrays immediately.

172

Introduction
Overview of Original Treeview

Design of Java Treeview
Choice of Platform: Java
Persistence of Configuration Information: The ConfigNode Interface
Decoupling Views and Models: DataMatrix, HeaderInfo and DataModel
Graphics Performance: Tree Traversal and Pixel Buffering
An Extensible File Format: The Generalized CDT File
Enabling Modularity: Generic Structure of Views
Enabling Shared Selection: The CdtSelection object

Implementation of Java Treeview

Description of ViewFrame Functionality
File Management
Preset Management
Searching for Genes
Tab-delimited Text Export
Window Management

Description of Dendrogram Display
Dendrogram Functionality
Recognized Annotation
Dendrogram Configuration
Dendrogram Implementation
Dendrogram Creation
Dendrogram Export

Description of Scatterplot display
Scatterplot Functionality
Scatterplot Configuration
Scatterplot Creation
Scatterplot Implementation
Scatterplot Export

Description of Karyoscope display
Karyoscope Functionality
Recognized Annotation
Karyoscope Configuration
Karyoscope Creation
Karyoscope Implementation
Karyoscope Export

Description of Summary display
Summary Functionality

Summary Creation
Summary Implementation

CONCLUDING REMARKS

REFERENCES

vii

88
89

91
91
92
93
95
97
99

102

102

104
104
105
108
109
109

110
110
112
112
115
117
118

119
120
121
122
122
123

124
124
125
126
128
129
130

131
131

132
133

133

165

References

Aon, J. C. and S. Cortassa (2001). "Involvement of nitrogen metabolism in the triggering of
ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae." Metab
Eng 3(3): 250-64.

Arreguin de Lorencez, M. and O. Kappeli (1987). "Regulation of gluconeogenic enzymes during
the cell cycle of Saccharomyces cerevisiae growing in a chemostat." J Gen Microbiol 133
(Pt 9): 2517-22.

Ashburner, M., C. A. Ball, et al. (2000). "Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium." Nat Genet 25(1): 25-9.

Auberson, L. C., C. V. Ramseier, et al. (1989). "Further evidence for the existence of a bottleneck
in the metabolism of Saccharomyces cerevisiae." Experientia 45(11-12): 1013-8.

Baganz, F., A. Hayes, et al. (1998). "Quantitative analysis of yeast gene function using
competition experiments in continuous culture." Yeast 14(15): 1417-27.

Birol, G., A. M. Zamamiri, et al. (2000). "Frequency analysis of autonomously oscillating yeast
cultures." 35(10): 1085-1091.

Boer, V. M., J. H. de Winde, et al. (2003). "The genome-wide transcriptional responses of
Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for
carbon, nitrogen, phosphorus, or sulfur." J Biol Chem 278(5): 3265-74.

Boraas, M. E., D. B. Seale, et al. (1998). "Rotifer size distribution changes during transient
phases in open cultures." Hydrobiologia 387/388: 477-482.

Buziol, S., J. Becker, et al. (2002). "Determination of in vivo kinetics of the starvation-induced
Hxt5 glucose transporter of Saccharomyces cerevisiae." FEM Yeast Res 2(3): 283-91.

Castrillo, J. I. and U. O. Ugalde (1994). "A general model of yeast energy metabolism in aerobic
chemostat culture." Yeast 10(2): 185-97.

Cazzador, L. (1991). "Analysis of oscillations in yeast continuous cultures by a new simplified
model." Bull Math Biol 53(5): 685-700.

Chen, P.S., T.T. Y., et al. (1956). "Microdetermination of Phosphorus." Analytical Chemistry 28:
1756-1758.

Crabtree, H. G. (1929). "Observations on the carbohydrate metabolism of tumors." Biochemical
Journal 23: 536.

de Kock, S. H., J. C. du Preez, et al. (2000). "The effect of vitamins and amino acids on glucose
uptake in aerobic chemostat cultures of three Saccharomyces cerevisiae strains." Syst
Appl Microbiol 23(1): 41-6.

DeRisi, J. L., V. R. lyer, et al. (1997). "Exploring the metabolic and genetic control of gene
expression on a genomic scale." Science 278(5338): 680-6.

Diderich, J. A., L. M. Raamsdonk, et al. (2002). "Effects of a hexokinase Il deletion on the
dynamics of glycolysis in continuous cultures of Saccharomyces cerevisiae." FEM Yeast
Res 2(2): 165-72.

du Preez, J. C., S. H. de Kock, et al. (2000). "The relationship between transport kinetics and
glucose uptake by Saccharomyces cerevisiae in aerobic chemostat cultures." Antonie
Van Leeuwenhoek 77(4): 379-88.

Dunham, M. J., H. Badrane, et al. (2002). "Characteristic genome rearrangements in
experimental evolution of Saccharomyces cerevisiae." Proc Natl Acad Sci U S A 99(25):
16144-9.

Dwight, S. S., M. A. Harris, et al. (2002). "Saccharomyces Genome Database (SGD) provides
secondary gene annotation using the Gene Ontology (GO)." Nucleic Acids Res 30(1): 69-
72.

Egli, T., U. Lendenmann, et al. (1993). "Kinetics of microbial growth with mixtures of carbon
sources." Antonie Van Leeuwenhoek 63(3-4): 289-98.

Eisen, M. B., P. T. Spellman, et al. (1998). "Cluster analysis and display of genome-wide

173

expression patterns." Proc Natl Acad Sci U S A 95(25): 14863-8.

Evans, C. T. and C. Ratledge (1983). "A comparison of the oleaginous yeast, Candida curvata,
grown on different carbon sources in continuous and batch culture." Lipids 18(9): 623-9.

Fiaux, J., Z. P. Cakar, et al. (2003). "Metabolic-Flux Profiling of the Yeasts Saccharomyces
cerevisiae and Pichia stipitis." Eukaryot Cell 2(1): 170-80.

Flikweert, M. T., M. Kuyper, et al. (1999). "Steady-state and transient-state analysis of growth and
metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-
decarboxylase activity." Biotechnol Bioeng 66(1): 42-50.

Gasch, A. P., P. T. Spellman, et al. (2000). "Genomic expression programs in the response of
yeast cells to environmental changes." Mol Biol Cell 11(12): 4241-57.

Gasch, A. P. and M. Werner-Washburne (2002). "The genomics of yeast responses to
environmental stress and starvation." Funct Integr Genomics 2(4-5): 181-92.

Gollub, J., C. A. Ball, et al. (2003). "The Stanford Microarray Database: data access and quality
assessment tools." Nucleic Acids Res 31(1): 94-6.

Gombert, A. K., M. Moreira dos Santos, et al. (2001). "Network identification and flux
quantification in the central metabolism of Saccharomyces cerevisiae under different
conditions of glucose repression." J Bacteriol 183(4): 1441-51.

Hayes, A., N. Zhang, et al. (2002). "Hybridization array technology coupled with chemostat
culture: Tools to interrogate gene expression in Saccharomyces cerevisiae." Methods
26(3): 281-90.

Herrero, P., R. Fernandez, et al. (1985). "Differential sensitivities to glucose and galactose
repression of gluconeogenic and respiratory enzymes from Saccharomyces cerevisiae."
Arch Microbiol 143(3): 216-9.

Huisman, J., H. C. Matthijs, et al. (2002). "Principles of the light-limited chemostat: theory and
ecological applications." Antonie Van Leeuwenhoek 81(1-4): 117-33.

Ishige, T., M. Krause, et al. (2003). "The Phosphate Starvation Stimulon of Corynebacterium
glutamicum Determined by DNA Microarray Analyses." J Bacteriol 185(15): 4519-29.

Joy, B., G. Steele, et al. (2000). Java(TM) Language Specification, Addison-Wesley Publishing
Company.

Kellis, M., N. Patterson, et al. (2003). "Sequencing and comparison of yeast species to identify
genes and regulatory elements." Nature 423(6937): 241-54.

Kiers, J., A. M. Zeeman, et al. (1998). "Regulation of alcoholic fermentation in batch and
chemostat cultures of Kluyveromyces lactis CBS 2359." Yeast 14(5): 459-69.

Kirk, N. and P. W. Piper (1994). "Growth rate influences MF alpha 1 promoter activity in MAT
alpha Saccharomyces cerevisiae." Appl Microbiol Biotechnol 42(2-3): 340-5.

Kubitscheck, H. E. (1970). Introduction to Research with Continuous Cultures. Englewood Cliffs,
N. J., Prentice-Hall, Inc.

Lange, P. and P. E. Hansche (1980). "Mapping of a centromere-linked gene responsible for
constitutive acid phosphatase synthesis in yeast." Mol Gen Genet 180(3): 605-7.

Larsson, C., U. von Stockar, et al. (1993). "Growth and metabolism of Saccharomyces cerevisiae
in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting
conditions." J Bacteriol 175(15): 4809-16.

Lemoigne, M., J. P. Aubert, et al. (1954). "La production d'alcool et la rendement de croissance
de la levure de boulangerie cultivee en aerobiose." Ann. Inst.Pasteur 87: 427-433.

Leuenberger, H. G. (1971). "Cultivation of Saccharomyces cerevisiae in continuous culture. I.
Growth kinetics of a respiratory deficient yeast strain grown in continuous culture." Arch
Mikrobiol 79(2): 176-86.

Leuenberger, H. G. (1972). "Cultivation of Saccharomyces cerevisiae in continuous culture. Il.
Influence of the crabtree effect on the growth characteristics of Saccharomyces
cerevisiae grown in a glucose limited chemostat." Arch Mikrobiol 83(4): 347-58.

Lyons, T. J., A. P. Gasch, et al. (2000). "Genome-wide characterization of the Zap1p zinc-
responsive regulon in yeast." Proc Natl Acad Sci U S A 97(14): 7957-62.

McNair, J. N., M. E. Boraas, et al. (1998). "Size-structure dynamics of the rotifer chemostat: a

174

simple physiologically structured model." Hydrobiologia 387/388: 469-476.

Monod, J. (1942). Recherches sure la croissance des cultures bacteriennes. Paris, Herman &
Cie.

Monod, J. (1950). "La Technique de culture continue. Theorie et applications." Ann. Inst. Pasteur
79: 390-410.

Novick, A. and L. Szilard (1950). "Description of the chemostat." Science: 715-716.

Novick, A. and L. Szilard (1950). "Experiments with the chemostat on spontaneous mutations of
bacteria." Proc Natl Acad Sci U S A 36: 708-719.

Ogawa, N., J. DeRisi, et al. (2000). "New components of a system for phosphate accumulation
and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic
expression analysis." Mol Biol Cell 11(12): 4309-21.

Olz, R., K. Larsson, et al. (1993). "Energy flux and osmoregulation of Saccharomyces cerevisiae
grown in chemostats under NaCl stress." J Bacteriol 175(8): 2205-13.

Overkamp, K. M., P. Kotter, et al. (2002). "Functional analysis of structural genes for NAD(+)-
dependent formate dehydrogenase in Saccharomyces cerevisiae." Yeast 19(6): 509-20.

Padilla, P. A., E. K. Fuge, et al. (1998). "The highly conserved, coregulated SNO and SNZ gene
families in Saccharomyces cerevisiae respond to nutrient limitation." J Bacteriol 180(21):
5718-26.

Pahlman, I. L., L. Gustafsson, et al. (2001). "Cytosolic redox metabolism in aerobic chemostat
cultures of Saccharomyces cerevisiae." Yeast 18(7): 611-20.

Paredes-Lopez, O., E. Camargo-Rubio, et al. (1976). "Influence of specific growth rate on
biomass yield, productivity, and compostion of Candida utilis in batch and continuous
culture." Appl Environ Microbiol 31(4): 487-91.

Peter Smits, H., J. Hauf, et al. (2000). "Simultaneous overexpression of enzymes of the lower
part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae."
Yeast 16(14): 1325-34.

Piper, M. D., P. Daran-Lapujade, et al. (2002). "Reproducibility of oligonucleotide microarray
transcriptome analyses. An interlaboratory comparison using chemostat cultures of
Saccharomyces cerevisiae." J Biol Chem 277(40): 37001-8.

Planta, R. J. and W. H. Mager (1998). "The list of cytoplasmic ribosomal proteins of
Saccharomyces cerevisiae." Yeast 14(5): 471-7.

Pollack, J. R., C. M. Perou, et al. (1999). "Genome-wide analysis of DNA copy-number changes
using cDNA microarrays." Nat Genet 23(1): 41-6.

Pretorius, I. S. (2000). "Tailoring wine yeast for the new millennium: novel approaches to the
ancient art of winemaking." Yeast 16(8): 675-729.

Salusjarvi, L., M. Poutanen, et al. (2003). "Proteome analysis of recombinant xylose-fermenting
Saccharomyces cerevisiae." Yeast 20(4): 295-314.

Sarvari Horvath, |., C. J. Franzen, et al. (2003). "Effects of Furfural on the Respiratory Metabolism
of Saccharomyces cerevisiae in Glucose-Limited Chemostats." Appl Environ Microbiol
69(7): 4076-86.

Stephanopoulos, G., D. Hwang, et al. (2002). "Mapping physiological states from microarray
expression measurements." Bioinformatics 18(8): 1054-63.

Stuckrath, I., H. C. Lange, et al. (2002). "Characterization of null mutants of the glyoxylate cycle
and gluconeogenic enzymes in S. cerevisiae through metabolic network modeling verified
by chemostat cultivation." Biotechnol Bioeng 77(1): 61-72.

ter Linde, J. J., H. Liang, et al. (1999). "Genome-wide transcriptional analysis of aerobic and
anaerobic chemostat cultures of Saccharomyces cerevisiae." J Bacteriol 181(24): 7409-
13.

Thomas, D. and Y. Surdin-Kerjan (1997). "Metabolism of sulfur amino acids in Saccharomyces
cerevisiae." Microbiol Mol Biol Rev 61(4): 503-32.

van de Peppel, J., P. Kemmeren, et al. (2003). "Monitoring global messenger RNA changes in
externally controlled microarray experiments." EMBO Rep 4(4): 387-93.

van den Berg, M. A., P. de Jong-Gubbels, et al. (1998). "Transient mRNA responses in

175

chemostat cultures as a method of defining putative regulatory elements: application to
genes involved in Saccharomyces cerevisiae acetyl-coenzyme A metabolism." Yeast
14(12): 1089-104.

van Hoek, P., J. P. van Dijken, et al. (2000). "Regulation of fermentative capacity and levels of
glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae." Enzyme Microb
Technol 26(9-10): 724-736.

van Maris, A. J., B. M. Bakker, et al. (2001). "Modulating the distribution of fluxes among
respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae."
FEM Yeast Res 1(2): 139-49.

Van Uden, N. and A. Madeira-Lopes (1975). "Dependence of the maximum temperature for
growth of Saccharomyces cerevisiae on nutrient concentration." Arch Microbiol 104(1):
23-8.

Van Urk, H., P. R. Mak, et al. (1988). "Metabolic responses of Saccharomyces cerevisiae CBS
8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose
excess." Yeast 4(4): 283-91.

Vrana, D. (1976). "Daughter cells as an important factor in determining the physiological state of
yeast populations." Biotechnol Bioeng 18(3): 297-309.

Wahlbom, C. F., R. R. Cordero Otero, et al. (2003). "Molecular analysis of a Saccharomyces
cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of
proteins involved in transport, initial xylose metabolism, and the pentose phosphate
pathway." Appl Environ Microbiol 69(2): 740-6.

Weusthuis, R. A., J. T. Pronk, et al. (1994). "Chemostat cultivation as a tool for studies on sugar
transport in yeasts." Microbiol Rev 58(4): 616-30.

Xu, R. and X. Li (2003). "A comparison of parametric versus permutation methods with
applications to general and temporal microarray gene expression data." Bioinformatics
19(10): 1284-9.

Ye, L., J. A. Berden, et al. (2001). "Expression and activity of the Hxt7 high-affinity hexose
transporter of Saccharomyces cerevisiae." Yeast 18(13): 1257-67.

176

